类球面

✍ dations ◷ 2025-04-02 21:31:43 #类球面
类球面是一种二次曲面。二维的椭圆有两个主轴,称为长轴与短轴。在三维空间里,将一个椭圆绕着其任何一主轴旋转,则可得到一个类球面。用另外一种方法来描述,类球面是一种椭球面。采用直角坐标 ( x ,   y ,   z ) {displaystyle (x, y, z),!} ,椭球面可以表达为其中, a {displaystyle a,!} 与 b {displaystyle b,!} 分别是椭球面在x-轴与y-轴的赤道半径, c {displaystyle c,!} 是椭球面在z-轴的极半径,这三个正值实数的半径决定了椭球面的形状。 以z-轴为旋转轴的类球面 a = b {displaystyle a=b,} ,它的方程为:扁球面c < a,它的表面积为:扁球面是半长轴为a而半短轴为c的椭圆围绕z-轴旋转而形成的,因此e可看作为离心率。长球面c > a,它的表面积为:长球面是半长轴为c而半短轴为a的椭圆围绕z-轴旋转而形成的,因此e可看作离心率。类球的体积是 4 3 π a 2 c {displaystyle {frac {4}{3}}pi a^{2}c,!} 。假若,一个类球面被参数化为其中, β {displaystyle beta ,!} 是参数纬度(parametric latitude), − π 2 < β < π 2 {displaystyle -{frac {pi }{2}}<beta <{frac {pi }{2}},!} , λ {displaystyle lambda ,!} 是经度, − π < λ < + π {displaystyle -pi <lambda <+pi ,!} 。那么,类球面的高斯曲率(Gaussian curvature)是类球面的平均曲率(mean curvature)是对于类球面,这两种曲率永远是正值的。所以,类球面的每一点都是椭圆的。

相关

  • 杂草野草,一般指在庭园、草坪或农地等土地上并非刻意栽种的植物。这些植物并不只限于草本植物。更多时候,野草专指有侵害性的植物,特别是那些不需栽种而能够自行大量繁殖的植物。植
  • 人口老龄化人口老龄化又称人口老化或人口高龄化、老龄化社会,是指因出生率降低和/或预期寿命延长导致年龄中位数增加的现象。大多数发达国家人口长寿,老龄人群变多;但发展中国家目前也出
  • 法国电视法国首次播出电视节目是在1931年,这使得法国成为世界上最早播出电视的国家之一。2005年开始,法国开始播出数字电视讯号的电视节目。和其他欧洲国家一样,法国采用DVB-T作为数字
  • 580110 数学 120 信息科学与系统科学 130 力学 140 物理学 150 化学 160 天文学 170 地球科学 180 生物学210 农学 220 林学 230 畜牧、兽医科学 240 水产学310 
  • 鬼魂鬼,又称鬼魂,某些文化习俗或宗教信仰的人认为鬼是生物死亡后遗留下的灵魂。在其他语言的翻译上,中文的“鬼”最常被翻译成英语的“Ghost”,日本则称之为“幽灵”,马来语则称之为
  • 蓝鲸蓝鲸(学名:Balaenoptera musculus)是属于须鲸小目的海洋哺乳动物。蓝鲸不仅是地球上现存体型最大的动物,也是地球史上最大的动物,长超过33米,重达177公吨。蓝鲸的身躯瘦长,背部青灰
  • 百万宝贝《百万宝贝》(英语:Million Dollar Baby)是克林特·伊斯特伍德在2004年制作的电影,由克林特·伊斯特伍德、希拉里·斯旺克与摩根·弗里曼等人主演。得到第77届奥斯卡金像奖最佳
  • 格洛利亚·蒙奇梅尔玛丽亚·格洛利亚·蒙奇梅尔·芭芭拉(西班牙语:María Gloria Münchmeyer Barber,1938年9月2日-)是一名电影、电视和剧场女演员。她以一些像《继母》的肥皂剧而知名。她嫁给了喜
  • 第73届英国电影学院奖第73届英国电影学院奖(英语:73rd British Academy Film Awards)于2020年2月2日在伦敦皇家阿尔伯特音乐厅举行,以表彰2019年英国国内外的优秀电影作品。奖项由英国电影和电视艺术
  • 橙带党奥兰治兄弟会(Orange Order),正式名称忠诚奥兰治机构(Loyal Orange Institution),是一个国际新教兄弟会(英语:Fraternal order)组织,主要在北爱尔兰活跃,此外在苏格兰、英联邦、美国、