在数学中,在一个集合上的交(meet)有两种定义:关于在这个集合上的偏序的唯一下确界(最大下界),假定下确界存在的话; 或者是满足幂等律的交换结合二元运算。在任何一个情况下,这个集合与交运算一起是半格。这两个定义产生等价的结果,除了在偏序方式中有可能直接定义更一般的元素的集合的交。最常见到交运算的领域是格。
通常把 是带有偏序 中的两个元素。 的一个元素 中的某对元素可能缺乏一个交,要么因为它们根本没有下界,要么因为它们的下界中没有一个大于所有其他的。如果所有的元素对都有交,则交实际上是在 上的二元运算,并且容易看出这个运算满足下列三个条件: 对有 中任何元素 上的 二元运算 , 上二元关系 上的偏序。对于 中任何元素 , 中的元素都有交,则确实有 , 中某些元素 , 的某个子集确实有关于它的下确界。对于非空有限子集,这两种方式产生同样的结果,因为都可以做为交的定义。在 的每个子集都有交的情况下,(,) 是完全格;详情参见完全性 (序理论)。