库仑定律

✍ dations ◷ 2025-04-25 18:05:28 #库仑定律
库仑定律(Coulomb's law),法国物理学家查尔斯·库仑于1785年发现,因而命名的一条物理学定律。库仑定律是电学发展史上的第一个定量规律。因此,电学的研究从定性进入定量阶段,是电学史中的一块重要的里程碑。库仑定律表明,在真空中两个静止点电荷之间的相互作用力与距离平方成反比,与电量乘积成正比,作用力的方向在它们的连线上,同号电荷相斥,异号电荷相吸。库仑定律的标量形式可以表示为其中, F {displaystyle F} 是作用力, k e {displaystyle k_{e}} 是库仑常数, q {displaystyle q} 与 q ′ {displaystyle q'} 为两个带有正负号的电荷, r {displaystyle r} 是两个电荷彼此之间的距离。在真空中,库伦定律可以表达为其中, ε 0 {displaystyle varepsilon _{0}} 为真空的电容率。早在1760年,丹尼尔·伯努利就曾怀疑静电的吸引行为遵循平方反比定律。:511766年,英格兰化学家约瑟夫·普利斯特里收到好友班杰明·富兰克林来信告知他的一项新发现:将软木塞球置入带电金属杯内部后,软木塞球不会出现任何异样行为。富兰克林希望普利斯特里重复做这实验以检试这事实是否正确。因此,普利斯特里设计出并完成了一个实验,该实验显示,带电空心金属容器的内部表面并未带有任何电荷,测量不出任何静电力。他于是在隔年发布推论,电荷之间的相互作用力具有类似于万有引力的平方反比形式,这是因为,假若的地球的形状是一个空心球壳,则在其内部的物体不会感受到一边的吸引力强过于另一边地吸引力。:731-733:99-100苏格兰物理学家约翰·罗比逊于1769年首次通过实验直接观测到,两个带电球体彼此之间作用于对方的物理行为,他发现,两个带电球体之间的作用力与它们之间距离的2.06次方成反比。很可惜的是,罗比逊并未察觉这发现的重要性。:100-1011770年代早期,著名英国物理学家亨利·卡文迪什通过巧妙的实验,得出了带电体之间的作用力依赖于带电量与距离,并得出静电力与距离的 2 ± 1 50 {displaystyle 2pm {frac {1}{50}}} 次方成反比,只是卡文迪什没有公布这个结果。后来,麦克斯韦利用与卡文迪什类似的方法,得出静电力与距离的 2 ± 1 21600 {displaystyle 2pm {frac {1}{21600}}} 次方成反比的结果。库仑定律是电学的基本定律,其中平方反比关系是否精确成立尤其重要,而根据现代量子场论,静电力的平方反比关系是与光子的静质量是否精确为零相关的,所以,对静电力的平方反比关系的精确验证,关系着现代物理学基本理论的基础。当前对库仑定律平方反比关系的验证越来越精确,如1971年进行的一次实验,给出库仑定律与平方反比关系的偏差小于 2.7 × 10 − 16 {displaystyle 2.7times 10^{-16}} 。库仑定律的标量形式只描述两个点电荷彼此相互作用的静电力的大小。一个电量为 q ′ {displaystyle q'} 的点电荷作用于另一个电量为 q {displaystyle q} 的点电荷,其静电力 F {displaystyle F} 的大小,可以用方程表达为:其中, r {displaystyle r} 是两个点电荷之间的距离, k e {displaystyle k_{mathrm {e} }} 是库仑常数。库仑常数与真空电容率的关系方程为正值的 F {displaystyle F} 表示排斥力;而负值则表示牵引力。采用国际单位制,真空电容率 ϵ 0 {displaystyle epsilon _{0}} 的值是 8.854   187   817 × 10 − 12 {displaystyle 8.854 187 817times 10^{-12}} F·m−1。采用厘米-克-秒制,单位电荷(esu),又称为静库仑(statcoulomb),定义为使库仑常数 k e {displaystyle k_{mathrm {e} }} 为1的数值。库仑定律的标量公式表明,力量的大小直接地与两个点电荷的电量成正比,又与两个点电荷之间距离的平方成反比。根据实验数据,距离的指数,与 − 2 {displaystyle -2} 的偏差,低于十亿分之一。给予两个电量分别为 q {displaystyle q} 、 q ′ {displaystyle q'} ,位置分别为 r {displaystyle mathbf {r} } 、 r ′ {displaystyle mathbf {r} '} 的点电荷。为了要得到点电荷 q ′ {displaystyle q'} 作用于点电荷 q {displaystyle q} 的力量 F {displaystyle mathbf {F} } 的大小与方向,必须使用库仑定律的矢量形式:假若两个点电荷同性(电荷的正负号相同),则其电量的乘积 q q ′ {displaystyle qq'} 是正值,两个点电荷互相排斥。反之,假若两个点电荷异性(电荷的正负号相反),则其电量的乘积 q q ′ {displaystyle qq'} 是负值,两个点电荷互相吸引。根据洛伦兹力定律,其中, F {displaystyle mathbf {F} } 是洛伦兹力, E {displaystyle mathbf {E} } 是电场, v {displaystyle mathbf {v} } 是电荷的运动速度, B {displaystyle mathbf {B} } 是磁场。假设,电荷静止不动:则 F = q E {displaystyle mathbf {F} =qmathbf {E} } 。所以,一个电量为 q ′ {displaystyle q'} ,位置为 r ′ {displaystyle mathbf {r} '} 的点电荷,所产生的电场 E {displaystyle mathbf {E} } 在位置 r {displaystyle mathbf {r} } 为假若电荷是正值,电场的方向是从点电荷以径向朝外指出;假若是负值,则电场的方向是反方向。电场的单位是V/m或N/C。由 N {displaystyle N} 个点电荷所组成的一个系统,其作用于一个电量为 q {displaystyle q} ,位置为 r {displaystyle mathbf {r} } 的检验电荷的静电力,可以用叠加原理来计算:其中, q i ′ {displaystyle q_{i}'} 和 r i ′ {displaystyle mathbf {r} _{i}'} 分别是第 i {displaystyle i} 个点电荷的电量和位置。对于一个连续电荷分布,我们可以将每一个无穷小的空间元素视为一个电量为 d q {displaystyle dq} 的点电荷,做无限求和。这程序等价于连续电荷分布的区域积分。线电荷分布(例如,一根带电的直线)的电量为其中, λ ( r ′ ) {displaystyle lambda (mathbf {r^{prime }} )} 是位于 r ′ {displaystyle mathbf {r^{prime }} } 的线电荷密度(每单位长度所带的电量), d l ′ {displaystyle dl^{prime }} 是一个无穷小线元素。表面电荷分布(例如,两平行金属板电容器的一片带电的金属板)的电量为其中, σ ( r ′ ) {displaystyle sigma (mathbf {r^{prime }} )} 是位于 r ′ {displaystyle mathbf {r^{prime }} } 的面电荷密度(每单位面积所带的电量), d a ′ {displaystyle da^{prime }} 是一个无穷小面积元素。体积电荷分布(例如,一个带电的圆球)的电量为其中, ρ ( r ′ ) {displaystyle rho (mathbf {r^{prime }} )} 是位于 r ′ {displaystyle mathbf {r^{prime }} } 的体电荷密度(每单位体积所带的电量), d τ ′ {displaystyle dtau ^{prime }} 是一个无穷小体积元素。作用于一个电量为 q {displaystyle q} 的检验电荷的静电力 F {displaystyle mathbf {F} } ,可以表达为其中, r {displaystyle mathbf {r} } 是检验电荷的位置, d q ′ {displaystyle dq'} 是位于 r ′ {displaystyle mathbf {r} ^{prime }} 的无穷小电荷元素。在上述两种表述里,只有当点电荷是处于固定状态的时候,库仑定律才是完全正确的;假若点电荷处于缓慢的运动状态,则只能说库仑定律是大概正确。这条件称为静电近似。当几个点电荷处于相对运动状态的时候,根据爱因斯坦的相对论,会有磁场产生,这连带地改变了作用于点电荷的力量。

相关

  • 胰腺癌胰腺癌(英语:pancreatic cancer)是指胰腺细胞发生癌变而产生的肿瘤,这些肿瘤细胞具有侵犯其他组织的能力。胰腺的癌症可分为许多类型,最常见的是胰腺腺癌(pancreatic adenocarcino
  • 年表古罗马年表按照时间先后顺序,列举古罗马重要历史事件。时间跨度从古罗马建立至拜占庭帝国最后试图收复罗马。
  • 胞管肾纲见内文胞管肾纲(学名:Secernentea),又名侧尾腺纲或尾感器纲,是线虫动物门之下的一个重要的纲。胞管肾纲之下的纲目计有:
  • 王铁冠王铁冠(1937年12-),中国石油地质学家。出生于上海。中国石油大学(北京)教授。1956年毕业于北京石油地质学校。1965年毕业于北京石油学院。1994年起在石油大学(北京)任教,现兼任国家自
  • 图表一张图表(Chart),或又称为统计图表,代表了一张图像化的数据,并经常以所用的图像命名,例如圆饼图,是主要使用圆形符号,长条图或直方图,则主要使用长方形符号。折线图,意味着使用线条符
  • 台北世界贸易中心国际贸易大楼坐标:25°2′3″N 121°33′40″E / 25.03417°N 121.56111°E / 25.03417; 121.56111台北世界贸易中心国际贸易大楼(英语:Taipei World Trade Center International Trade Bui
  • 科里奥利力科里奥利力(英语:Coriolis Force;简称科氏力)是一种惯性力,是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。此现象由法国著名数学家兼
  • 埃克曼螺线埃克曼螺旋(英语:Ekman spiral),或称为埃克曼螺线,是指海洋表面附近的海流因为风和科氏力的作用造成海流方向旋转的结构。这个结构以瑞典海洋学家沃恩·华费特·埃克曼命名。表面
  • ʡ̆会厌闪音是辅音的一种,就目前所知不是任何语言的音素,但在达哈洛语(英语:Dahalo language)等语言中以清会厌塞音/ʡ/之元音间浊同位音的形式存在。伊拉克阿拉伯语中也可能存有会
  • 哈伯法哈伯法(也称哈伯-博施法,德文:Haber-Bosch-Verfahren,英文:Haber Process,也称Haber-Bosch process或Fritz-Haber Process)是通过氮气及氢气产生氨气(NH3)的过程。氮气及氢气在200个