反比

✍ dations ◷ 2025-04-04 11:17:47 #反比
在数学中,比例是两个非零数量 y {displaystyle y} 与 x {displaystyle x} 之间的比较关系,记为 y : x ( x , y ∈ R ) {displaystyle y:x;(x,yin mathbb {R} )} ,在计算时则更常写为 y x {displaystyle {frac {y}{x}}} 或 y / x {displaystyle y/x} 。若两个变量的关系符合其中一个量是另一个量乘以一个常数( y = k x {displaystyle y=kx} ),或等价地表达为两变数之比率为一个常数(称为比值, y / x = k {displaystyle y/x=k} ),则称两者是成比例的。如果 y {displaystyle y} 与 x {displaystyle x} 是可通约的,亦即它们之间存在一个公测量(common measure) m ( m ∈ R ) {displaystyle m;(min mathbb {R} )} 使得 y = m p , x = m q ( p , q ∈ Z ) {displaystyle y=mp,x=mq;(p,qin mathbb {Z} )} , y : x {displaystyle y:x} 就相等于两个整数的比: y : x = m p : m q = p : q {displaystyle y:x=mp:mq=p:q} ,那么 y : x {displaystyle y:x} 就称为可通约比(commensurable ratio), p q {displaystyle {frac {p}{q}}} 称为一个分数,其比值称为有理数;否则,如果不存在一个公测量, y : x {displaystyle y:x} 就称为不可通约比(incommensurable ratio),其比值称为无理数,亦即无法表达为分数的数。两个比例之间也可以互相比较。如果两个比例相等,亦即,它们的比值相同,这个相等关系称为一个等比关系,例如, y : x = u : o {displaystyle y:x=u:o} 是一个等比关系,其中 x u = y o {displaystyle xu=yo} 。特别是,如果第二项等于第三项,例如 y : x = x : z {displaystyle y:x=x:z} ,那么 x 2 = y z → x = y z {displaystyle x^{2}=yzrightarrow x={sqrt {yz}}} , x {displaystyle x} 称为 y {displaystyle y} 与 z {displaystyle z} 的几何平均数(geometric mean)。若存在一非零常数 k {displaystyle k} 使则称变量 y {displaystyle y} 与变量 x {displaystyle x} 成比例(有时也称为成正比)。当 x {displaystyle x} 和 y {displaystyle y} 成正比关系,表示当 x {displaystyle x} 变为原来 k {displaystyle k} 倍时, y {displaystyle y} 也会变为原来的 k {displaystyle k} 倍。该关系通常用 ∝ {displaystyle propto } (U+221D)表示为:并称该常数比率为比例常数或比例关系中的比例恒量。在日常生活中,正比这个词的使用并不严格局限于线性函数,一般来说,一个变量随着另一个变量的增大/缩小而相应地增大/缩小,近似地满足线性关系的时候,我们可以说这两个变量成正比。现代数学对于比例的用法并没有严格限制,例如,在一个班级里面,我们可以说:“男孩与女孩的比例是2比1”。然而,在古希腊数学中,由于比例是用来表示倍数关系,所以必须是相同种类的数量才能构成比例,例如,欧几里得在《几何原本》第五册中如此定义比例: .mw-parser-output .templatequote{margin-top:0;overflow:hidden}.mw-parser-output .templatequote .templatequotecite{line-height:1em;text-align:left;padding-left:2em;margin-top:0}.mw-parser-output .templatequote .templatequotecite cite{font-size:small}λόγος ἐστὶ δύο μεγεθῶν ὁμογενῶν ἡ κατὰ πηλικότητά ποια σχέσις.A ratio is a sort of relation in respect of size between two magnitudes of the same kind.比例是两个同类数量之间的大小关系。阿基米德使用这个定义来叙述均匀运动(uniform motion)的等比关系:在一个均匀运动中,两段距离的比例相等于它们所需时间的比例。阿基米德所要描述的,就是匀速运动,但是古希腊数学并不接受距离与时间的比例(亦即速率),因为它们是不一样的数量,所以他没有办法直接说:“均匀运动就是每一点上的速率皆相等”。当采用古希腊的比例论来叙述时,必须取两段距离 L 1 {displaystyle L_{1}} 与 L 2 {displaystyle L_{2}} 以及所需时间 T 1 {displaystyle T_{1}} 与 T 2 {displaystyle T_{2}} ,均匀运动(匀速运动)就是 L 1 : L 2 = T 1 : T 2 {displaystyle L_{1}:L_{2}=T_{1}:T_{2}} 。因为等价于因此可推出,若 y {displaystyle y} 与 x {displaystyle x} 之间存在正比关系,则 x {displaystyle x} 与 y {displaystyle y} 之间存在正比关系。y {displaystyle y} 与 x {displaystyle x} 的正比关系也可以被解读为一条在二维直角坐标系穿过原点的直线,其斜率为比例常数。比例关系中,位于两端的两数之积等于位于中间的两数之积:在上面定义中,我们说有时称两个成比例的变量成正比例,这是为了和反比例关系相对应。如果两变量中,一个变量和另外一个变量的倒数成正比,或等价地,若这两变量的乘积是一个常数,则称这两个变量是成反比例(或相反地变化)的。从而可继续推出,若存在一非零常数 k {displaystyle k} 使则变量 y {displaystyle y} 和变量 x {displaystyle x} 成反比。反比例关系的概念基本上说明的是这样一种关系,即当一个变量的值变大时,另一变量的值相应变小,而两者之积总是保持为一常数(即比例常数)。举例来说,运动中的车辆走完一段路程所花费的时间是和这辆车运动的速度成反比的;在地上挖个坑所花的时间也(大致地)和雇来挖坑的人数成反比的。在笛卡尔坐标平面上,两个具有反比例关系的变量的图形是一对双曲线。该图线上的每一点的 X 和 Y 坐标值之积总是等于比例常数 k {displaystyle k} 。由于 k {displaystyle k} 非零,所以图线不会与坐标轴相交若变量 y {displaystyle y} 与变量 x {displaystyle x} 的指数函数成正比,即:若存在非零常数 k {displaystyle k} 使则称 y {displaystyle y} 与 x {displaystyle x} 成指数比例。类似地,若变量 y {displaystyle y} 与变量 x {displaystyle x} 的对数函数成正比,即:若存在非零常数 k {displaystyle k} 使则称 y {displaystyle y} 与 x {displaystyle x} 成对数比例。用实验方法确定两个物理量是否具有正比关系,可采用这样的办法,即进行多次测量并在笛卡尔坐标系中将这些测量结果用多个点来表示,而绘制出这些点的分布图形;如果所有点完全(或接近)地落在一条穿过原点 ( 0 , 0 ) {displaystyle (0,0)} 的直线上,则这两个变量(很有可能)具有比例常数等于该直线斜率的正比关系。

相关

  • 头孢曲松头孢曲松(Ceftriaxone),商品名为罗氏芬(Rocephin),是一种可用于治疗如革兰氏阳性菌及革兰氏阴性菌等多种细菌感染的抗生素,包括中耳炎、心内膜炎、脑膜炎、肺炎、骨关节炎、腹腔内
  • 支持细胞塞尔托利氏细胞(Sertoli cell),又名为塞托利细胞或史脱立细胞或塞透力细胞,是细精管一部分的睾丸的营养细胞。它是由促滤泡成熟激素(简称FSH)所启动,并在其细胞膜上有促滤泡成熟激
  • 防火毯防火毯,又称防火毡或灭火毯,是一种用于灭火工具,可用于覆盖在起火的物品,透过阻隔氧气供给,令火焰熄灭。防火毯是一块不易燃的毯,有不同大小,但一般为了易于取用,以边长1.2米至1.8米
  • 中洋脊洋中脊(Mid-ocean ridge),又称洋脊、大洋中脊、中央海岭,是位于全球海中张裂性板块边界的一系列火山结构系统,也是世界上最长的山脉、海底山脉,长达80,000千米(49,700英里),其中连续
  • 碳纳米管碳纳米管(英语:Carbon Nanotube,缩写为CNT)是在1991年1月由日本筑波NEC实验室的物理学家饭岛澄男使用高分辨透射电子显微镜从电弧法生产碳纤维的产物中发现的。它是一种管状的碳
  • 六角状在几何学中,六边形是指有六条边和六个顶点的多边形,其内角和为720度。六边形有很多种,其中对称性最高的是正六边形。正六边形是一种可以使用尺规作图的六边形,也可以拼满平面,因
  • 布莱恩·德鲁克尔布莱恩·J·德鲁克尔(英语:Brian J. Druker,1955年4月30日-),美国医学家,俄勒冈健康与科学大学教授。他是奈特癌症研究所主管、JELD-WEN血癌研究所主席。2009年他因开发治疗慢性粒
  • 罗伯特·卡恩罗伯特·艾略特·卡恩(英语:Robert Elliot Kahn,1938年12月23日-),美国电气工程师,与文顿·瑟夫一起发明了传输控制协议(TCP)和互联网协议(IP),这两个协议成为互联网核心通信协议的基础
  • 欧洲统合欧洲一体化是指欧洲整体或部分地区在政治、法律、经济、社会、文化等领域统合的历史。现代欧洲统合主要由欧洲联盟和欧洲委员会推动进行。最初提出欧洲统合构想的是理察·尼
  • 力量投射力量投射是一个用在政治学上的术语,指一个国家可以在远离本土的地方表现出武力和其他一些威胁。这种能力在国际关系是一个国家权力的重要组成成分。在军事上,与此类似的词是“