首页 >
反比
✍ dations ◷ 2025-06-07 02:41:56 #反比
在数学中,比例是两个非零数量
y
{displaystyle y}
与
x
{displaystyle x}
之间的比较关系,记为
y
:
x
(
x
,
y
∈
R
)
{displaystyle y:x;(x,yin mathbb {R} )}
,在计算时则更常写为
y
x
{displaystyle {frac {y}{x}}}
或
y
/
x
{displaystyle y/x}
。若两个变量的关系符合其中一个量是另一个量乘以一个常数(
y
=
k
x
{displaystyle y=kx}
),或等价地表达为两变数之比率为一个常数(称为比值,
y
/
x
=
k
{displaystyle y/x=k}
),则称两者是成比例的。如果
y
{displaystyle y}
与
x
{displaystyle x}
是可通约的,亦即它们之间存在一个公测量(common measure)
m
(
m
∈
R
)
{displaystyle m;(min mathbb {R} )}
使得
y
=
m
p
,
x
=
m
q
(
p
,
q
∈
Z
)
{displaystyle y=mp,x=mq;(p,qin mathbb {Z} )}
,
y
:
x
{displaystyle y:x}
就相等于两个整数的比:
y
:
x
=
m
p
:
m
q
=
p
:
q
{displaystyle y:x=mp:mq=p:q}
,那么
y
:
x
{displaystyle y:x}
就称为可通约比(commensurable ratio),
p
q
{displaystyle {frac {p}{q}}}
称为一个分数,其比值称为有理数;否则,如果不存在一个公测量,
y
:
x
{displaystyle y:x}
就称为不可通约比(incommensurable ratio),其比值称为无理数,亦即无法表达为分数的数。两个比例之间也可以互相比较。如果两个比例相等,亦即,它们的比值相同,这个相等关系称为一个等比关系,例如,
y
:
x
=
u
:
o
{displaystyle y:x=u:o}
是一个等比关系,其中
x
u
=
y
o
{displaystyle xu=yo}
。特别是,如果第二项等于第三项,例如
y
:
x
=
x
:
z
{displaystyle y:x=x:z}
,那么
x
2
=
y
z
→
x
=
y
z
{displaystyle x^{2}=yzrightarrow x={sqrt {yz}}}
,
x
{displaystyle x}
称为
y
{displaystyle y}
与
z
{displaystyle z}
的几何平均数(geometric mean)。若存在一非零常数
k
{displaystyle k}
使则称变量
y
{displaystyle y}
与变量
x
{displaystyle x}
成比例(有时也称为成正比)。当
x
{displaystyle x}
和
y
{displaystyle y}
成正比关系,表示当
x
{displaystyle x}
变为原来
k
{displaystyle k}
倍时,
y
{displaystyle y}
也会变为原来的
k
{displaystyle k}
倍。该关系通常用
∝
{displaystyle propto }
(U+221D)表示为:并称该常数比率为比例常数或比例关系中的比例恒量。在日常生活中,正比这个词的使用并不严格局限于线性函数,一般来说,一个变量随着另一个变量的增大/缩小而相应地增大/缩小,近似地满足线性关系的时候,我们可以说这两个变量成正比。现代数学对于比例的用法并没有严格限制,例如,在一个班级里面,我们可以说:“男孩与女孩的比例是2比1”。然而,在古希腊数学中,由于比例是用来表示倍数关系,所以必须是相同种类的数量才能构成比例,例如,欧几里得在《几何原本》第五册中如此定义比例:
.mw-parser-output .templatequote{margin-top:0;overflow:hidden}.mw-parser-output .templatequote .templatequotecite{line-height:1em;text-align:left;padding-left:2em;margin-top:0}.mw-parser-output .templatequote .templatequotecite cite{font-size:small}λόγος ἐστὶ δύο μεγεθῶν ὁμογενῶν ἡ κατὰ πηλικότητά ποια σχέσις.A ratio is a sort of relation in respect of size between two magnitudes of the same kind.比例是两个同类数量之间的大小关系。阿基米德使用这个定义来叙述均匀运动(uniform motion)的等比关系:在一个均匀运动中,两段距离的比例相等于它们所需时间的比例。阿基米德所要描述的,就是匀速运动,但是古希腊数学并不接受距离与时间的比例(亦即速率),因为它们是不一样的数量,所以他没有办法直接说:“均匀运动就是每一点上的速率皆相等”。当采用古希腊的比例论来叙述时,必须取两段距离
L
1
{displaystyle L_{1}}
与
L
2
{displaystyle L_{2}}
以及所需时间
T
1
{displaystyle T_{1}}
与
T
2
{displaystyle T_{2}}
,均匀运动(匀速运动)就是
L
1
:
L
2
=
T
1
:
T
2
{displaystyle L_{1}:L_{2}=T_{1}:T_{2}}
。因为等价于因此可推出,若
y
{displaystyle y}
与
x
{displaystyle x}
之间存在正比关系,则
x
{displaystyle x}
与
y
{displaystyle y}
之间存在正比关系。y
{displaystyle y}
与
x
{displaystyle x}
的正比关系也可以被解读为一条在二维直角坐标系穿过原点的直线,其斜率为比例常数。比例关系中,位于两端的两数之积等于位于中间的两数之积:在上面定义中,我们说有时称两个成比例的变量成正比例,这是为了和反比例关系相对应。如果两变量中,一个变量和另外一个变量的倒数成正比,或等价地,若这两变量的乘积是一个常数,则称这两个变量是成反比例(或相反地变化)的。从而可继续推出,若存在一非零常数
k
{displaystyle k}
使则变量
y
{displaystyle y}
和变量
x
{displaystyle x}
成反比。反比例关系的概念基本上说明的是这样一种关系,即当一个变量的值变大时,另一变量的值相应变小,而两者之积总是保持为一常数(即比例常数)。举例来说,运动中的车辆走完一段路程所花费的时间是和这辆车运动的速度成反比的;在地上挖个坑所花的时间也(大致地)和雇来挖坑的人数成反比的。在笛卡尔坐标平面上,两个具有反比例关系的变量的图形是一对双曲线。该图线上的每一点的 X 和 Y 坐标值之积总是等于比例常数
k
{displaystyle k}
。由于
k
{displaystyle k}
非零,所以图线不会与坐标轴相交若变量
y
{displaystyle y}
与变量
x
{displaystyle x}
的指数函数成正比,即:若存在非零常数
k
{displaystyle k}
使则称
y
{displaystyle y}
与
x
{displaystyle x}
成指数比例。类似地,若变量
y
{displaystyle y}
与变量
x
{displaystyle x}
的对数函数成正比,即:若存在非零常数
k
{displaystyle k}
使则称
y
{displaystyle y}
与
x
{displaystyle x}
成对数比例。用实验方法确定两个物理量是否具有正比关系,可采用这样的办法,即进行多次测量并在笛卡尔坐标系中将这些测量结果用多个点来表示,而绘制出这些点的分布图形;如果所有点完全(或接近)地落在一条穿过原点
(
0
,
0
)
{displaystyle (0,0)}
的直线上,则这两个变量(很有可能)具有比例常数等于该直线斜率的正比关系。
相关
- 竹桃霉素竹桃霉素是一种大环内酯类抗生素。该抗生素由细黄链霉菌(Streptomyces antibioticus)合成,其抗菌谱与红霉素相同,但抗菌能力较红霉素弱。竹桃霉素与红霉素有不完全的交叉耐药性,
- 头晕头晕(英语:Dizziness),是一种空间认知和稳定度的功能性障碍。头晕(dizziness)一词的定义较含糊不清,因为头晕可能是眩晕、晕厥前期(英语:presyncope) 、重心平衡障碍(英语:Balance disor
- 美国政府议长:南希·裴洛西(民主党) 多数党领袖(英语:Party leaders of the United States House of Representatives):斯坦利·霍耶(民主党) 少数党领袖(英语:Party leaders of the United Sta
- 水螅Hydra americana Hydra attenuata(异名Hydra vulgaris) Hydra canadensis Hydra carnea Hydra cauliculata Hydra circumcincta 褐水螅 Hydra fusca 哈尔滨水螅 Hydra harbine
- Logistic函数逻辑函数(英语:logistic function)或逻辑曲线(英语:logistic curve)是一种常见的S函数,它是皮埃尔·弗朗索瓦·韦吕勒(英语:Pierre François Verhulst)在1844或1845年在研究它与人口
- 法国兴业银行法国法国兴业银行(法语:Société Générale,简称法兴,Euronext:GLE)是法国银行业三巨头之一,另两个为法国巴黎银行(BNP Paribas,又名“巴黎国民银行”)和法国农业信贷银行(Crédit Ag
- 真灵长大目真灵长大目(Euarchonta)是灵长总目的一个演化支,包含了树鼩目、皮翼目、灵长目及史前的更猴目。灵长动物又译为真统兽大目(“Euarchonta”意为“真正的始祖或先驱”),这个分类是于
- 马斯河默兹河(法语:Meuse)也称马斯河(荷兰语:Maas, Maes),发源于法国香槟-阿登大区上马恩省朗格勒高原,流经比利时,最终在荷兰注入北海,和莱茵河口连成三角洲,全长925公里,是欧洲的主要河流。
- 亡灵鬼,又称鬼魂,某些文化习俗或宗教信仰的人认为鬼是生物死亡后遗留下的灵魂。在其他语言的翻译上,中文的“鬼”最常被翻译成英语的“Ghost”,日本则称之为“幽灵”,马来语则称之为
- 维尔纳·赫尔佐格维尔纳·赫尔佐格(德语:Werner Herzog,(德语:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000"