反比

✍ dations ◷ 2025-10-14 05:07:25 #反比
在数学中,比例是两个非零数量 y {displaystyle y} 与 x {displaystyle x} 之间的比较关系,记为 y : x ( x , y ∈ R ) {displaystyle y:x;(x,yin mathbb {R} )} ,在计算时则更常写为 y x {displaystyle {frac {y}{x}}} 或 y / x {displaystyle y/x} 。若两个变量的关系符合其中一个量是另一个量乘以一个常数( y = k x {displaystyle y=kx} ),或等价地表达为两变数之比率为一个常数(称为比值, y / x = k {displaystyle y/x=k} ),则称两者是成比例的。如果 y {displaystyle y} 与 x {displaystyle x} 是可通约的,亦即它们之间存在一个公测量(common measure) m ( m ∈ R ) {displaystyle m;(min mathbb {R} )} 使得 y = m p , x = m q ( p , q ∈ Z ) {displaystyle y=mp,x=mq;(p,qin mathbb {Z} )} , y : x {displaystyle y:x} 就相等于两个整数的比: y : x = m p : m q = p : q {displaystyle y:x=mp:mq=p:q} ,那么 y : x {displaystyle y:x} 就称为可通约比(commensurable ratio), p q {displaystyle {frac {p}{q}}} 称为一个分数,其比值称为有理数;否则,如果不存在一个公测量, y : x {displaystyle y:x} 就称为不可通约比(incommensurable ratio),其比值称为无理数,亦即无法表达为分数的数。两个比例之间也可以互相比较。如果两个比例相等,亦即,它们的比值相同,这个相等关系称为一个等比关系,例如, y : x = u : o {displaystyle y:x=u:o} 是一个等比关系,其中 x u = y o {displaystyle xu=yo} 。特别是,如果第二项等于第三项,例如 y : x = x : z {displaystyle y:x=x:z} ,那么 x 2 = y z → x = y z {displaystyle x^{2}=yzrightarrow x={sqrt {yz}}} , x {displaystyle x} 称为 y {displaystyle y} 与 z {displaystyle z} 的几何平均数(geometric mean)。若存在一非零常数 k {displaystyle k} 使则称变量 y {displaystyle y} 与变量 x {displaystyle x} 成比例(有时也称为成正比)。当 x {displaystyle x} 和 y {displaystyle y} 成正比关系,表示当 x {displaystyle x} 变为原来 k {displaystyle k} 倍时, y {displaystyle y} 也会变为原来的 k {displaystyle k} 倍。该关系通常用 ∝ {displaystyle propto } (U+221D)表示为:并称该常数比率为比例常数或比例关系中的比例恒量。在日常生活中,正比这个词的使用并不严格局限于线性函数,一般来说,一个变量随着另一个变量的增大/缩小而相应地增大/缩小,近似地满足线性关系的时候,我们可以说这两个变量成正比。现代数学对于比例的用法并没有严格限制,例如,在一个班级里面,我们可以说:“男孩与女孩的比例是2比1”。然而,在古希腊数学中,由于比例是用来表示倍数关系,所以必须是相同种类的数量才能构成比例,例如,欧几里得在《几何原本》第五册中如此定义比例: .mw-parser-output .templatequote{margin-top:0;overflow:hidden}.mw-parser-output .templatequote .templatequotecite{line-height:1em;text-align:left;padding-left:2em;margin-top:0}.mw-parser-output .templatequote .templatequotecite cite{font-size:small}λόγος ἐστὶ δύο μεγεθῶν ὁμογενῶν ἡ κατὰ πηλικότητά ποια σχέσις.A ratio is a sort of relation in respect of size between two magnitudes of the same kind.比例是两个同类数量之间的大小关系。阿基米德使用这个定义来叙述均匀运动(uniform motion)的等比关系:在一个均匀运动中,两段距离的比例相等于它们所需时间的比例。阿基米德所要描述的,就是匀速运动,但是古希腊数学并不接受距离与时间的比例(亦即速率),因为它们是不一样的数量,所以他没有办法直接说:“均匀运动就是每一点上的速率皆相等”。当采用古希腊的比例论来叙述时,必须取两段距离 L 1 {displaystyle L_{1}} 与 L 2 {displaystyle L_{2}} 以及所需时间 T 1 {displaystyle T_{1}} 与 T 2 {displaystyle T_{2}} ,均匀运动(匀速运动)就是 L 1 : L 2 = T 1 : T 2 {displaystyle L_{1}:L_{2}=T_{1}:T_{2}} 。因为等价于因此可推出,若 y {displaystyle y} 与 x {displaystyle x} 之间存在正比关系,则 x {displaystyle x} 与 y {displaystyle y} 之间存在正比关系。y {displaystyle y} 与 x {displaystyle x} 的正比关系也可以被解读为一条在二维直角坐标系穿过原点的直线,其斜率为比例常数。比例关系中,位于两端的两数之积等于位于中间的两数之积:在上面定义中,我们说有时称两个成比例的变量成正比例,这是为了和反比例关系相对应。如果两变量中,一个变量和另外一个变量的倒数成正比,或等价地,若这两变量的乘积是一个常数,则称这两个变量是成反比例(或相反地变化)的。从而可继续推出,若存在一非零常数 k {displaystyle k} 使则变量 y {displaystyle y} 和变量 x {displaystyle x} 成反比。反比例关系的概念基本上说明的是这样一种关系,即当一个变量的值变大时,另一变量的值相应变小,而两者之积总是保持为一常数(即比例常数)。举例来说,运动中的车辆走完一段路程所花费的时间是和这辆车运动的速度成反比的;在地上挖个坑所花的时间也(大致地)和雇来挖坑的人数成反比的。在笛卡尔坐标平面上,两个具有反比例关系的变量的图形是一对双曲线。该图线上的每一点的 X 和 Y 坐标值之积总是等于比例常数 k {displaystyle k} 。由于 k {displaystyle k} 非零,所以图线不会与坐标轴相交若变量 y {displaystyle y} 与变量 x {displaystyle x} 的指数函数成正比,即:若存在非零常数 k {displaystyle k} 使则称 y {displaystyle y} 与 x {displaystyle x} 成指数比例。类似地,若变量 y {displaystyle y} 与变量 x {displaystyle x} 的对数函数成正比,即:若存在非零常数 k {displaystyle k} 使则称 y {displaystyle y} 与 x {displaystyle x} 成对数比例。用实验方法确定两个物理量是否具有正比关系,可采用这样的办法,即进行多次测量并在笛卡尔坐标系中将这些测量结果用多个点来表示,而绘制出这些点的分布图形;如果所有点完全(或接近)地落在一条穿过原点 ( 0 , 0 ) {displaystyle (0,0)} 的直线上,则这两个变量(很有可能)具有比例常数等于该直线斜率的正比关系。

相关

  • 癌症治疗癌症免疫疗法(英语:cancer immunotherapy或immuno-oncology)是一类通过激活免疫系统来治疗癌症的方法。此类疗法采用了癌症免疫学(英语:Cancer immunology)研究的成果,这是肿瘤学中
  • 玉部,为汉字索引中的部首之一,康熙字典214个部首中的第九十六个(五划的则为第二个)。俗称王字旁。就繁体中文中,玉部归于五划部首;简体中文拆分为玉部与王部。玉部通常是从下、左
  • 乔治·纳波利塔诺乔治·纳波利塔诺(意大利语:Giorgio Napolitano,1925年6月29日-),出生于意大利那不勒斯,意大利政治人物,现任终身参议员,前总统。2005年,纳波利塔诺成为终身参议员。2006年5月,他当选为
  • 沈其韩沈其韩(1922年4月27日-),中国地质学家。1922年出生于江苏淮阴。籍贯江苏海门。1946年毕业于重庆大学地质系。1991年当选为中国科学院学部委员(院士)。国土资源部中国地质科学院
  • 萨克森萨克森公国,中欧古国,领土大概涵盖了不来梅、汉堡、下萨克森、北莱茵-威斯特法伦现代德语国家地区,和萨安州和大部分石勒苏益格-荷尔斯泰因州 。 804年,查理曼透过萨克森战争把
  • 剑桥郡剑桥郡(英语:Cambridgeshire,简称:Cambs),是一个位于英格兰东盎格利亚地区的郡,位于林肯以南,诺福克和修福以西,埃塞克斯、赫福以北,贝德福德、北咸顿以东,政府驻地为剑桥。现时的剑桥
  • 电力生产本列表列出各国年度发电量。
  • Z检验Z检验,也称“U检验”,是为了检验在零假设情况下测试数据能否可以接近正态分布的一种统计测试。根据中心极限定理,在大样本条件下许多测验可以被贴合为正态分布。在不同的显著性
  • 阿维菌素阿维菌素(英语:Avermectin)是一种十六元大环内酯衍生物,作为强力的驱虫药和杀虫剂使用。阿维菌素是一种天然化合物,由链霉菌(Streptomyces avermitilis)发酵产生,这是一种土壤放线菌
  • abbr class=abbr title=R36/37/38: 刺激眼部、呼吸系统及皮肤R36/37/38/abbr警示性质标准词(英语:Risk Phrases,简写:R-phrases)是于《欧联指导标准67/548/EEC 附录III: 有关危险物品与其储备的特殊风险性质》里定义。该列表被集中并再出版于指导标准2001/