首页 >
中微子振荡
✍ dations ◷ 2025-11-18 13:35:49 #中微子振荡
中微子振荡(Neutrino oscillation)是一个量子力学现象,是指中微子在生成时所伴随的轻子(包括电子、渺子、τ子)味可在之后转化成不同的味,而被测量出改变。当中微子在空间中传播时,测到中微子带有某个味的概率呈现周期性变化。理论物理学家布鲁诺·庞蒂科夫最先于1957年提出此猜想。尔后一连串的各种实验皆观察到此一现象。中微子振荡也是长期未解决的太阳中微子问题的解答。中微子振荡无论对理论物理还是实验物理而言都是相当重要的。因为这意味着中微子具有非零的静质量,这与原始版本的粒子物理标准模型不相吻合。由于发现了中微子振荡现象存在的证明,并取得中微子质量数据,日本超级神冈探测器的梶田隆章以及加拿大萨德伯里中微子观测站的阿瑟·麦克唐纳两人获颁2015年诺贝尔物理学奖。科学家应用各种不同的探测器技术对各能量级的中微子进行测量,如今各种来源的中微子振荡已被多方面的实验收集的大量证据所证实。在以美国科学家雷蒙德·戴维斯领导的Homestake实验(英语:Homestake experiment)中,发现观测到的中微子流量与标准太阳模型预测的不符(太阳中微子问题)。这是实验中人们第一次观测到和中微子振荡有关的现象。随后,更多基于使用放射性元素和水切连科夫辐射探测器的实验证实了同样的现象。直到2001年加拿大萨德伯里中微子天文台的测量结果发表,人们才能够充分的证实这数量上的不符是由中微子振荡引起的。太阳中微子的能量及一般在20兆电子伏以下,传播距离为太阳和地球之间的距离。在5兆电子伏以上,太阳中微子的振荡通过在太阳体内的振荡而产生 MSW 作用,这与下文中将会提到的真空振荡是两个不同的过程。早期IMB,MACRO和日本的神冈探测器均观测到从大气层中放射出的μ中微子与电中微子比例的偏差。此后超级神冈探测器在此基础上进行更为精确的测量,能量覆盖幅度由百万电子伏至亿万电子伏,基线长度为地球的半径。核反应堆实验可以用来探测反电中微子的振荡。此类实验中最突出的是KamLAND(英语:Kamioka Liquid Scintillator Antineutrino Detector)。反应堆中产生的反中微子和太阳中微子的能量级相当。此类试验的基线长度短至数十米,长至数百公里。2012日3月8日,大亚湾中微子实验国际合作组宣布,发现最后一种中微子震荡,并且测量到其震荡概率
sin
2
(
2
θ
13
)
=
0.092
±
0.017
{displaystyle sin ^{2}(2theta _{13})=0.092pm 0.017}
。假若这结果成立,物理学者立可开始研究中微子与反中微子之间的不对称性,尝试解释为什么宇宙中的物质超多于反物质。利用加速器产生的中微子束可使实验相对更容易人为控制。此类的实验观察与大气层中微子振荡同样的现象,基线长度多为数百公里。中微子在此类试验中的能量级为数十亿电子伏。MINOS的最新报告指出其观测结果与K2K及SuperK的相符合。早期LSND机器发表了非常具有争议性的观测结果。新设计的MinibooNE实验机于2007年初发表的结果驳回了LSND的所谓两中微子模型。正在设计中的T2K实验将利用295公里长的基线和SuperK探测器来测量一参量
θ
13
{displaystyle theta _{13}}
,预期2009年开机。类似的NOvA利用810公里长的基线和MINOS探测器。中微子振荡的概念与中性K介子系统中的振荡相似,最早由理论物理学家布鲁诺·庞蒂科夫于1957年提出。以下将会讨论到的整套原理由庞蒂科夫于1967年发表。一年后太阳中微子问题首次被观提出。接着格利波夫(Gribov)和庞蒂科夫于1969年联合发表了一篇著名的文章《中微子天文学与轻子电量》。太阳和大气层中微子试验的观测结果说明中微子振荡的根源在于其味特征态与质量特征态不完全相同。这两种特征态之间的关系可通过以下方程来描述:其中U
α
i
{displaystyle U_{alpha i}}
通常称为PMNS矩阵(亦称“中微子振荡矩阵”)。这与描述夸克的 CKM 矩阵 非常相似。
假设此矩阵为对等矩阵,那么中微子的味特征态会和质量特征态相同。但实验证明,事实并非如此。如果把3味的中微子全部考虑进去,此矩阵为3×3矩阵。很多时候只考虑两个,于是会用2×2矩阵。如果要描述多一个中微子(下文会提到),需要4×4或是更高维的矩阵。 以下为3×3矩阵 :其中
s
12
=
sin
θ
12
{displaystyle s_{12}=sin theta _{12}}
,
c
12
=
cos
θ
12
{displaystyle c_{12}=cos theta _{12}}
,以此类推。
假如中微子是一种马约拉纳粒子(目前还不清楚),所有相位因数α1和α2均为零,并且与不参与振荡现象。假如存在中微子双电子衰变,那么这些因数将会影响衰变的速度。另外一个相位因数δ只有在CP不守恒时才会有非零值。理论预言中微子会违反CP守恒,但实验上还未观察到此现象。假如实验证明这3×3矩阵不是对等矩阵,我们或许需要通过引入“惰性中微子”(sterile neutrons)或是其他新概念来解释试验的数据。
相关
- 雷迪帕韦雷迪帕韦(英语:Ledipasvir,亦作GS-5885)是吉利德科学(英语:Gilead Sciences)研发的治疗丙型肝炎的药物。在完成了Ⅲ期临床试验后,吉利德于2014年2月10日向美国联邦政府申请报批了固
- 颅咽管瘤颅咽管瘤是发生于颅咽管(Landzert's canal)的先天性良性肿瘤,多见于少年和儿童,从胚胎期颅咽管的残余组织发生,好发于蝶鞍上垂体结节部上端,少数位于鞍内,向鞍上发展,个别见于蝶窦或
- 托马斯·亨特·摩尔根托马斯·亨特·摩尔根(英语:Thomas Hunt Morgan,1866年9月25日-1945年12月4日),美国遗传学家、现代遗传学之父,约翰霍普金斯大学博士。他在对黑腹果蝇遗传突变的研究中,首次确认了染
- 菜籽固醇菜籽固醇(英语:Brassicasterol,简称BR, 又称为5,22-二烯-24S-甲基-3β-胆固醇、5,22-二烯-麦角甾-3β-醇、菜籽甾醇)是一种由一些单细胞藻类(浮游植物)以及某些陆生植物(如油菜)合成
- 单性生殖单性生殖又称为孤雌生殖(Parthenogenesis),是动物或植物的卵子,不经过受精过程,而单独发育成后代的生殖方式,与一般无性生殖稍有区别。单性生殖一般发生在多种植物和无脊椎动物
- 卡尔文途径卡尔文循环(英语:Calvin cycle,或简称卡氏循环,又译作开尔文循环)是由美国加州大学伯克利分校梅尔文·卡尔文、安德鲁·本森和詹姆士·巴沙姆 3 人发现。梅尔文·卡尔文于1961年
- 石石部,为汉字索引中的部首之一,康熙字典214个部首中的第一百一十二个(五划的则为第十八个)。就繁体和简体中文中,石部归于五划部首。石部通常从上、下、右方为部字。且无其他部首
- RNA诱导沉默复合体RNA诱导沉默复合物(RNA-induced silencing complex,RISC),是RNA干扰技术中起作用的重要物质。一定数量的外源性双链RNA(dsRNA)进入细胞后,被类似于核糖核酸酶Ⅲ的Dicer酶切割成短
- 内维尔·莫特内维尔·弗朗西斯·莫特爵士,CH,FRS(英语:Sir Nevill Francis Mott,1905年9月30日-1996年8月8日),英国物理学家,1977年,因为对磁性和无序体系电子结构的基础性理论研究,与菲利普·安德
- 牧区牧区可以指:
