首页 >
泊松回归
✍ dations ◷ 2025-04-04 11:17:06 #泊松回归
在统计学上,泊松回归(英语:Poisson regression)是用来为计数资料和列联表建模的一种回归分析。泊松回归假设反应变量Y是泊松分布,并假设它期望值的对数可由一组未知参数进行线性表达。当其用于列联表分析时,泊松回归模型也被称作对数-线性模型。泊松回归模型是广义线性模型(GLM)的一种,以对数变化作为连接函数(canonical function),该模型的假设之一是其被解释变量服从泊松分布。x
∈
R
n
{displaystyle mathbf {x} in mathbb {R} ^{n}}
代表由一组相互独立的变量组成的向量,其泊松回归的模型形式为:log
(
E
(
Y
∣
x
)
)
=
α
+
β
′
x
,
{displaystyle log(operatorname {E} (Ymid mathbf {x} ))=alpha +mathbf {beta } 'mathbf {x} ,}
α
∈
R
{displaystyle alpha in mathbb {R} }
,
β
∈
R
n
{displaystyle mathbf {beta } in mathbb {R} ^{n}}
.亦可简洁表示为:
log
(
E
(
Y
∣
x
)
)
=
θ
′
x
,
{displaystyle log(operatorname {E} (Ymid mathbf {x} ))={boldsymbol {theta }}'mathbf {x} ,,}此处,
x
{displaystyle mathbf {x} }
是 n+1维的向量,由n个独立变量(自变量向量)一个常向量(元素取值全为1)构成,用一个θ 代表第一个表达式当中的 α 和 β。因此,当已知泊松回归模型当中的 θ和解释变量
x
{displaystyle mathbf {x} }
, 其满足泊松分布的被解释变量的期望值可以由下式来预测:Yi 是被解释变量的观测值,相应的解释变量为 xi ,可由极大似然估计(MLE)的方法来估计参数θ。 极大似然估计不能通过解析表达式获得解析解,是由其对数似然函数为凸函数的特性,可通过Newton–Raphson或其他基于梯度下降的思想方法来进行参数估计。如上所述,已知泊松回归模型当中的 θ和解释变量
x
{displaystyle mathbf {x} }
, 其回归表达式为:泊松分布的概率密度函数为:现已知解释变量的观测值为由 m个向量组成
x
i
∈
R
n
+
1
,
i
=
1
,
…
,
m
{displaystyle x_{i}in mathbb {R} ^{n+1},,i=1,ldots ,m}
, 对应 m 个被解释变量的观测值,
y
1
,
…
,
y
m
∈
R
{displaystyle y_{1},ldots ,y_{m}in mathbb {R} }
. 若同时已知θ, 则该组观测值所对应的联合概率可由下式表达:极大似然方法估计 θ的核心思想是,去找到能使得基于当前观测值的联合概率尽可能达到最大的θ。(可理解为:变量的取值当前观测值,与取值为其他任何数值相比,是发生概率最高的事件)。 既然目标是寻找到最优的θ,可以先将上式的等号左边简单表达为关于θ 的表达式:注意等号右边的表达式并未改写,但通常难于付诸计算,因而采用其对数变化后的表达式( log-likelihood)即:由于 θ 仅出现在似然函数的前两项,因而在极大化似然函数的运算过程中,可以只考虑前两项。可以删去第三项yi!,待优化的似然函数可以简洁表达为:ℓ
(
θ
∣
X
,
Y
)
=
∑
i
=
1
m
(
y
i
θ
′
x
i
−
e
θ
′
x
i
)
{displaystyle ell (theta mid X,Y)=sum _{i=1}^{m}left(y_{i}theta 'x_{i}-e^{theta 'x_{i}}right)}
.为了找到极大值,需要求解方程:∂
ℓ
(
θ
∣
X
,
Y
)
∂
θ
=
0
{displaystyle {frac {partial ell (theta mid X,Y)}{partial theta }}=0}可以通过对其似然函数取负值 (negative log-likelihood),
−
ℓ
(
θ
∣
X
,
Y
)
{displaystyle -ell (theta mid X,Y)}
是一个凸函数, 标准的凸优化方法可以考虑来求解 θ的最优值。统一的方法是Newton-Raphson 与Iterative Weighted Least Square(IWLS)算法。 给θ一组初始值,IWLS 是通过多次迭代更新直到θ 收敛。泊松回归常用于被解释变量为计数(Count)形式时,包括事件发生的次数,比如:客服中心接到的电话次数。其满足相互独立的假设。在此例子中,即为:拨打客服电话的人们之间不存在相互关联。不会因为甲拨打了客服,而影响乙拨打的可能性。但在建模时,需要考虑统计该事件发生的时期,比如目标变量统计的是一天接到的电话次数,还是一个星期,或者一个月。这个时期的数据作为回归模型中的抵消值,在下面解释。泊松分布也可以适用于比率数据,即事件发生次数与其测量时间或测量范围的比值。比如生物学家测量某森林中树木种类的数目, 比率变量即为每平方千米的树木种类数。人口学家关注的是每个人口年(person-year)的人口死亡数。通常来说,比率变量表达的是单位时间内该事件发生的次数。这些例子中,平方米”,“人口年”这些变量就是所谓的"曝光量"(Exposure)。泊松回归中将其视为偏移量放在等式右边。which implies在R中运行广义线性模型时,可用offset()来指定表示“曝光量”的变量:服从泊松分布的变量,具有期望与方差相等的特征。若观测样本的方差远大于期望值的时,则认为存在过度离势,当前的模型不合理。其常见的原因是缺失重要的解释变量。解决该问题的方法,通常采用准似然估计(quasi-likelihood) 或者负二项分布来估计。泊松回归的另一个常见的问题是零膨胀zero-inflated model。标准的泊松分布其定义域为非负整数,被解释变量y取值为0的概率为:但如果观测样本中添加大量的0,则取值为0的频率远大于理论概率,此时不适宜直接采用泊松回归。比如观测一组人在一小时内的吸烟情况,目标变量是每人吸了多少根烟。但当观测人群中有大量的非吸烟者,就会有过多的目标变量为0, 这就是零膨胀。可以采用其他的广义线性模型,比如负二项分布负二项分布来建模,或者零膨胀模型zero-inflated model 来解决。
相关
- 发光二极管发光二极管(英语:Light-emitting diode,缩写为LED)是一种能发光的半导体电子元件,透过三价与五价元素所组成的复合光源。此种电子元件早在1962年出现,早期只能够发出低光度的红光,
- 哺乳哺乳是指雌性哺乳动物通过乳腺分泌的乳汁给后代的幼体喂食的行为,在人类的场合此过程称为母乳喂养。无论时期有多久远,只要是哺乳动物的雌性都具有这种特性,无一例外。乳汁分泌
- 固体物理学固体物理学是凝聚态物理学中最大的分支。它研究的对象是固体,特别是原子排列具有周期性结构的晶体。固体物理学的基本任务是从微观上解释固体材料的宏观物理性质,主要理论基础
- Fesub2/subPsub2/subOsub7/sub焦磷酸亚铁是一种无机化合物,化学式为Fe2P2O7。焦磷酸亚铁可由氧化铁、铁粉和磷酸二氢铵(摩尔比为1:1:3)缓慢加热至1170K反应得到。草酸亚铁二水合物和磷酸二氢铵的反应可以制
- Cssub2/subO氧化铯是一种无机化合物,铯和氧组成,属于氧化物,其化学式是Cs2O。已知的二元铯氧化物有:Cs11O3,Cs4O,Cs7O和Cs2O。他们颜色鲜艳。该种氧化铯Cs2O外观为橙黄色六角形晶体。氧化铯可
- 格锐目定律格锐目定律(英语:Graham's Law)说明定温定压时,气体的隙流速率与其气体微粒质量的平方根成反比。此定律由苏格兰化学家托马斯·格锐目于1831年在实验的基础上提出,其形式为:
- 12号染色体12号染色体是人类23对染色体中的一对,正常人拥有2条12号染色体。12号染色体缠绕了约1亿3300万碱基对(构筑DNA的材料),并包含了人类细胞中约4%至4.5%的DNA。每条染色体上的基因识
- 抽水蓄能发电抽蓄发电(Pumped-storage hydroelectricity),又称抽水蓄能电站,是一种特殊的水力发电厂。它将离峰电力以水的势能储存起来的大型装置,在用电的尖峰时间再用来发电。换言之,这类“
- 黄土汤黄土汤,出自《伤寒杂病论》。
- 细胞外电极在细胞生物学、分子生物学及其相关领域中,胞外,或细胞外(extracellular,有时亦作胞外空间/细胞外空间(extracellular space))指“在细胞外”。通常,胞外空间位于质膜之外,被流体占据(