首页 >
泊松回归
✍ dations ◷ 2025-09-13 23:42:15 #泊松回归
在统计学上,泊松回归(英语:Poisson regression)是用来为计数资料和列联表建模的一种回归分析。泊松回归假设反应变量Y是泊松分布,并假设它期望值的对数可由一组未知参数进行线性表达。当其用于列联表分析时,泊松回归模型也被称作对数-线性模型。泊松回归模型是广义线性模型(GLM)的一种,以对数变化作为连接函数(canonical function),该模型的假设之一是其被解释变量服从泊松分布。x
∈
R
n
{displaystyle mathbf {x} in mathbb {R} ^{n}}
代表由一组相互独立的变量组成的向量,其泊松回归的模型形式为:log
(
E
(
Y
∣
x
)
)
=
α
+
β
′
x
,
{displaystyle log(operatorname {E} (Ymid mathbf {x} ))=alpha +mathbf {beta } 'mathbf {x} ,}
α
∈
R
{displaystyle alpha in mathbb {R} }
,
β
∈
R
n
{displaystyle mathbf {beta } in mathbb {R} ^{n}}
.亦可简洁表示为:
log
(
E
(
Y
∣
x
)
)
=
θ
′
x
,
{displaystyle log(operatorname {E} (Ymid mathbf {x} ))={boldsymbol {theta }}'mathbf {x} ,,}此处,
x
{displaystyle mathbf {x} }
是 n+1维的向量,由n个独立变量(自变量向量)一个常向量(元素取值全为1)构成,用一个θ 代表第一个表达式当中的 α 和 β。因此,当已知泊松回归模型当中的 θ和解释变量
x
{displaystyle mathbf {x} }
, 其满足泊松分布的被解释变量的期望值可以由下式来预测:Yi 是被解释变量的观测值,相应的解释变量为 xi ,可由极大似然估计(MLE)的方法来估计参数θ。 极大似然估计不能通过解析表达式获得解析解,是由其对数似然函数为凸函数的特性,可通过Newton–Raphson或其他基于梯度下降的思想方法来进行参数估计。如上所述,已知泊松回归模型当中的 θ和解释变量
x
{displaystyle mathbf {x} }
, 其回归表达式为:泊松分布的概率密度函数为:现已知解释变量的观测值为由 m个向量组成
x
i
∈
R
n
+
1
,
i
=
1
,
…
,
m
{displaystyle x_{i}in mathbb {R} ^{n+1},,i=1,ldots ,m}
, 对应 m 个被解释变量的观测值,
y
1
,
…
,
y
m
∈
R
{displaystyle y_{1},ldots ,y_{m}in mathbb {R} }
. 若同时已知θ, 则该组观测值所对应的联合概率可由下式表达:极大似然方法估计 θ的核心思想是,去找到能使得基于当前观测值的联合概率尽可能达到最大的θ。(可理解为:变量的取值当前观测值,与取值为其他任何数值相比,是发生概率最高的事件)。 既然目标是寻找到最优的θ,可以先将上式的等号左边简单表达为关于θ 的表达式:注意等号右边的表达式并未改写,但通常难于付诸计算,因而采用其对数变化后的表达式( log-likelihood)即:由于 θ 仅出现在似然函数的前两项,因而在极大化似然函数的运算过程中,可以只考虑前两项。可以删去第三项yi!,待优化的似然函数可以简洁表达为:ℓ
(
θ
∣
X
,
Y
)
=
∑
i
=
1
m
(
y
i
θ
′
x
i
−
e
θ
′
x
i
)
{displaystyle ell (theta mid X,Y)=sum _{i=1}^{m}left(y_{i}theta 'x_{i}-e^{theta 'x_{i}}right)}
.为了找到极大值,需要求解方程:∂
ℓ
(
θ
∣
X
,
Y
)
∂
θ
=
0
{displaystyle {frac {partial ell (theta mid X,Y)}{partial theta }}=0}可以通过对其似然函数取负值 (negative log-likelihood),
−
ℓ
(
θ
∣
X
,
Y
)
{displaystyle -ell (theta mid X,Y)}
是一个凸函数, 标准的凸优化方法可以考虑来求解 θ的最优值。统一的方法是Newton-Raphson 与Iterative Weighted Least Square(IWLS)算法。 给θ一组初始值,IWLS 是通过多次迭代更新直到θ 收敛。泊松回归常用于被解释变量为计数(Count)形式时,包括事件发生的次数,比如:客服中心接到的电话次数。其满足相互独立的假设。在此例子中,即为:拨打客服电话的人们之间不存在相互关联。不会因为甲拨打了客服,而影响乙拨打的可能性。但在建模时,需要考虑统计该事件发生的时期,比如目标变量统计的是一天接到的电话次数,还是一个星期,或者一个月。这个时期的数据作为回归模型中的抵消值,在下面解释。泊松分布也可以适用于比率数据,即事件发生次数与其测量时间或测量范围的比值。比如生物学家测量某森林中树木种类的数目, 比率变量即为每平方千米的树木种类数。人口学家关注的是每个人口年(person-year)的人口死亡数。通常来说,比率变量表达的是单位时间内该事件发生的次数。这些例子中,平方米”,“人口年”这些变量就是所谓的"曝光量"(Exposure)。泊松回归中将其视为偏移量放在等式右边。which implies在R中运行广义线性模型时,可用offset()来指定表示“曝光量”的变量:服从泊松分布的变量,具有期望与方差相等的特征。若观测样本的方差远大于期望值的时,则认为存在过度离势,当前的模型不合理。其常见的原因是缺失重要的解释变量。解决该问题的方法,通常采用准似然估计(quasi-likelihood) 或者负二项分布来估计。泊松回归的另一个常见的问题是零膨胀zero-inflated model。标准的泊松分布其定义域为非负整数,被解释变量y取值为0的概率为:但如果观测样本中添加大量的0,则取值为0的频率远大于理论概率,此时不适宜直接采用泊松回归。比如观测一组人在一小时内的吸烟情况,目标变量是每人吸了多少根烟。但当观测人群中有大量的非吸烟者,就会有过多的目标变量为0, 这就是零膨胀。可以采用其他的广义线性模型,比如负二项分布负二项分布来建模,或者零膨胀模型zero-inflated model 来解决。
相关
- 维生素D缺乏症维生素D缺乏症是缺乏维生素D所表现出来的一系列病症。这种疾病可能是由于人体摄入的维生素D不足,并且没有接受足够多的阳光照射(准确地说是阳光中的中波紫外线B光)导致的,也有可
- CAS注册号CAS编号(CAS Registry Number,或称CAS Number,CAS Rn,CAS #),又称CAS登录号或CAS登记号码,是某种物质(化合物、高分子材料、生物序列(Biological sequences)、混合物或合金)的唯一的数
- 比索洛尔毕索洛尔(Bisoprolol,商品名:Concor)是一种Beta受体阻滞剂(beta-blocker),它可以有选择性的通过阻断肾上腺素(adrenalin)与beta-1受体的连接来发挥作用,而不对beta-2受体产生影响。由
- 肺痨结核病(Tuberculosis,又称TB)为结核杆菌感染引起的疾病。结核通常造成肺部感染,也会感染身体的其他部分。大多数感染者没有症状,此型态感染称为潜伏结核感染(英语:Latent tuberculo
- 孕龄孕龄(Gestational age)也称为妊娠年龄或怀孕周数,是量测怀孕周数的方式,是由孕妇最后一次月经(LMP)开始时为准来计算孕龄,或是用更精确的方式来推算的年龄。若用其他方式推算,例如从
- 乙苯乙苯(英语:Ethylbenzene,分子式:C6H5CH2CH3)是一个芳香族的有机化合物,主要用途是在石油化学工业作为生产苯乙烯的中间体,所制成的苯乙烯一般被用来制备常用的塑料制品——聚苯乙烯
- 草津温泉草津温泉(日语:草津温泉/くさつおんせん),位于日本群马县吾妻郡草津町的温泉名胜地。其起源已有千年之久。草津温泉的pH值在1.7至2.1,是强酸性硫黄泉,具有医疗功效。林罗山的日本三
- 债权债权(德语:Obligation (Recht)、英语:law of obligations)是大陆法系法律体系中,一方当事人得请求他方当事人为一定行为(作为或不作为)的司法上权利,规范此类权利发生、进行及消灭之
- 台罗拼音台湾闽南语罗马字拼音方案(台罗:Tâi-uân Bân-lâm-gú Lô-má-jī Phing-im Hong-àn,白話字:Tâi-oân Bân-lâm-gú Lô-má-jī Pheng-im Hong-àn),简称为台罗拼音或台罗
- 中岛加工出口区加工出口区高雄园区(旧名高雄加工出口区),为台湾南部由经济部加工出口区管理处高雄分处管理的加工出口区,位于高雄市前镇区西北部,凸出于高雄港区因濬港工程所填成之中岛半岛上。