首页 >
泊松回归
✍ dations ◷ 2025-04-25 03:52:02 #泊松回归
在统计学上,泊松回归(英语:Poisson regression)是用来为计数资料和列联表建模的一种回归分析。泊松回归假设反应变量Y是泊松分布,并假设它期望值的对数可由一组未知参数进行线性表达。当其用于列联表分析时,泊松回归模型也被称作对数-线性模型。泊松回归模型是广义线性模型(GLM)的一种,以对数变化作为连接函数(canonical function),该模型的假设之一是其被解释变量服从泊松分布。x
∈
R
n
{displaystyle mathbf {x} in mathbb {R} ^{n}}
代表由一组相互独立的变量组成的向量,其泊松回归的模型形式为:log
(
E
(
Y
∣
x
)
)
=
α
+
β
′
x
,
{displaystyle log(operatorname {E} (Ymid mathbf {x} ))=alpha +mathbf {beta } 'mathbf {x} ,}
α
∈
R
{displaystyle alpha in mathbb {R} }
,
β
∈
R
n
{displaystyle mathbf {beta } in mathbb {R} ^{n}}
.亦可简洁表示为:
log
(
E
(
Y
∣
x
)
)
=
θ
′
x
,
{displaystyle log(operatorname {E} (Ymid mathbf {x} ))={boldsymbol {theta }}'mathbf {x} ,,}此处,
x
{displaystyle mathbf {x} }
是 n+1维的向量,由n个独立变量(自变量向量)一个常向量(元素取值全为1)构成,用一个θ 代表第一个表达式当中的 α 和 β。因此,当已知泊松回归模型当中的 θ和解释变量
x
{displaystyle mathbf {x} }
, 其满足泊松分布的被解释变量的期望值可以由下式来预测:Yi 是被解释变量的观测值,相应的解释变量为 xi ,可由极大似然估计(MLE)的方法来估计参数θ。 极大似然估计不能通过解析表达式获得解析解,是由其对数似然函数为凸函数的特性,可通过Newton–Raphson或其他基于梯度下降的思想方法来进行参数估计。如上所述,已知泊松回归模型当中的 θ和解释变量
x
{displaystyle mathbf {x} }
, 其回归表达式为:泊松分布的概率密度函数为:现已知解释变量的观测值为由 m个向量组成
x
i
∈
R
n
+
1
,
i
=
1
,
…
,
m
{displaystyle x_{i}in mathbb {R} ^{n+1},,i=1,ldots ,m}
, 对应 m 个被解释变量的观测值,
y
1
,
…
,
y
m
∈
R
{displaystyle y_{1},ldots ,y_{m}in mathbb {R} }
. 若同时已知θ, 则该组观测值所对应的联合概率可由下式表达:极大似然方法估计 θ的核心思想是,去找到能使得基于当前观测值的联合概率尽可能达到最大的θ。(可理解为:变量的取值当前观测值,与取值为其他任何数值相比,是发生概率最高的事件)。 既然目标是寻找到最优的θ,可以先将上式的等号左边简单表达为关于θ 的表达式:注意等号右边的表达式并未改写,但通常难于付诸计算,因而采用其对数变化后的表达式( log-likelihood)即:由于 θ 仅出现在似然函数的前两项,因而在极大化似然函数的运算过程中,可以只考虑前两项。可以删去第三项yi!,待优化的似然函数可以简洁表达为:ℓ
(
θ
∣
X
,
Y
)
=
∑
i
=
1
m
(
y
i
θ
′
x
i
−
e
θ
′
x
i
)
{displaystyle ell (theta mid X,Y)=sum _{i=1}^{m}left(y_{i}theta 'x_{i}-e^{theta 'x_{i}}right)}
.为了找到极大值,需要求解方程:∂
ℓ
(
θ
∣
X
,
Y
)
∂
θ
=
0
{displaystyle {frac {partial ell (theta mid X,Y)}{partial theta }}=0}可以通过对其似然函数取负值 (negative log-likelihood),
−
ℓ
(
θ
∣
X
,
Y
)
{displaystyle -ell (theta mid X,Y)}
是一个凸函数, 标准的凸优化方法可以考虑来求解 θ的最优值。统一的方法是Newton-Raphson 与Iterative Weighted Least Square(IWLS)算法。 给θ一组初始值,IWLS 是通过多次迭代更新直到θ 收敛。泊松回归常用于被解释变量为计数(Count)形式时,包括事件发生的次数,比如:客服中心接到的电话次数。其满足相互独立的假设。在此例子中,即为:拨打客服电话的人们之间不存在相互关联。不会因为甲拨打了客服,而影响乙拨打的可能性。但在建模时,需要考虑统计该事件发生的时期,比如目标变量统计的是一天接到的电话次数,还是一个星期,或者一个月。这个时期的数据作为回归模型中的抵消值,在下面解释。泊松分布也可以适用于比率数据,即事件发生次数与其测量时间或测量范围的比值。比如生物学家测量某森林中树木种类的数目, 比率变量即为每平方千米的树木种类数。人口学家关注的是每个人口年(person-year)的人口死亡数。通常来说,比率变量表达的是单位时间内该事件发生的次数。这些例子中,平方米”,“人口年”这些变量就是所谓的"曝光量"(Exposure)。泊松回归中将其视为偏移量放在等式右边。which implies在R中运行广义线性模型时,可用offset()来指定表示“曝光量”的变量:服从泊松分布的变量,具有期望与方差相等的特征。若观测样本的方差远大于期望值的时,则认为存在过度离势,当前的模型不合理。其常见的原因是缺失重要的解释变量。解决该问题的方法,通常采用准似然估计(quasi-likelihood) 或者负二项分布来估计。泊松回归的另一个常见的问题是零膨胀zero-inflated model。标准的泊松分布其定义域为非负整数,被解释变量y取值为0的概率为:但如果观测样本中添加大量的0,则取值为0的频率远大于理论概率,此时不适宜直接采用泊松回归。比如观测一组人在一小时内的吸烟情况,目标变量是每人吸了多少根烟。但当观测人群中有大量的非吸烟者,就会有过多的目标变量为0, 这就是零膨胀。可以采用其他的广义线性模型,比如负二项分布负二项分布来建模,或者零膨胀模型zero-inflated model 来解决。
相关
- 顶复门见内文顶复门(学名:Apicomplexa,亦作Apicomplexia)是原生真核生物之下一个寄生囊泡虫的门,是一个物种分类众多的大类。其中大部分含有独特的四层膜细胞器顶质体,属于色素体的一种,
- 主要组织相容性复合物主要组织相容性复合体(major histocompatibility complex,MHC),又称主要组织相容性复合基因,是存在于大部分脊椎动物基因组中的一个基因家族,与免疫系统密切相关,其中人类的MHC糖蛋
- 言语障碍言语障碍(Speech and language impairment),是包括听觉、说话的能力、语言能力等等沟通问题的总称。听觉问题一般会交由耳科医生处理,而语言病理学家或语言治疗师则负责诊断、治
- 汉弥尔顿威廉·汉弥尔顿(英语:William Donald Hamilton、1939年8月1日-2000年3月5日),英国皇家学会成员,被认为是20世纪最伟大的演化生物学理论家之一。他提出了亲属选择理论,解释蚁类中工
- 教育指数下表中列出的教育指数(education index ),是联合国开发计划署发表的人类发展指数的三大成分指标之一,用成人识字率(2/3权重)及小学、中学、大学综合入学率(1/3权重)共同衡量。影响
- 活化 (生物)活化(Competence)又称为感受态,是一个在微生物学、遗传学、分子生物学和细胞生物学里很常见的名词,用来指一种能令细胞有能力从细胞以外的环境接纳DNA的方法。无论是在自然条件
- 四夷四夷,是中国古代中原华夏部落对九州境内四方部落(夷人)的称呼。这个称呼最早起源于周代,是周王朝用来区分“王母弟甥舅(华夏)”部族和四方“非王母弟甥舅(夷狄)”部族的称呼。后
- 迈克尔·格伦斯坦迈克尔·格伦斯坦(英语:Michael Grunstein,1946年-),美国生物化学家, 加利福尼亚大学洛杉矶分校医学院教授。格伦斯坦在麦吉尔大学获得学士学位,在英国爱丁堡大学获博士学位。他在
- 市场学产品 · 定价 · 分销 服务 · 零售 · 宣传 品牌管理 · 大客户营销 营销道德 · 营销效果 营销调查 · 市场调查 市场划分 · 营销战略 市场优势 · 操
- 圣经神学圣经神学一词有许多不同的用法,很难对其做出清楚的界定。可以指:圣经神学运动(biblical theology movement)是一个近代基督教神学运动,盛行于20世纪40年代至70年代。运动由北