共变导数

✍ dations ◷ 2025-05-18 11:12:04 #微分几何,黎曼几何

数学上,共变导数或称协变导数是在流形上定义沿着向量场的导数的方法之一。

事实上,除了引入的风格不同之外,共变导数和联络没有实质上的区别。

在黎曼和伪黎曼流形理论中,共变导数通常指列维-奇维塔联络。

这里,我们给出一个向量相对于向量场的共变导数(也称为张量导数)的传统的带指标记号的简介;张量的共变导数是同一概念的推广。

本条目中,我们使用爱因斯坦记号。我们假设读者熟悉微分流形的概念特别是关于切向量的概念。

向量u的沿着向量v的共变导数 {\displaystyle \nabla } 的向量(比如说加速度,不在图中)可以表达在坐标系 ( e r , e θ ) {\displaystyle ({\mathbf {e} }_{r},{\mathbf {e} }_{\theta })} 。如果我们沿着无穷小闭曲面依次沿着两个不同方向然后返回,我们会看到同样的现象。向量的无穷小变化是曲率的一个测量。

定义中的向量 u 和 v 是定义在同一点 的。而且共变导数 v u {\displaystyle \nabla _{\mathbf {v} }{\mathbf {u} }} 的一个向量。

共变导数的定义不用空间的度量。但是,一个给定的度量唯一的确定了一个特殊的共变导数,称为列维-奇维塔联络。

导数的性质暗示者 v u {\displaystyle \nabla _{\mathbf {v} }{\mathbf {u} }} 周围的情况,就像标量函数在一点沿着曲线的导数依赖于点周围一样。

共变导数在一个固定的坐标图中,可以用张量描述,但是它不是一个张量,因为它不是在坐标变换下不变的。

在共变导数中关于点 围的信息可以用来定义向量的平行移动。而且曲率,挠率和测地线也可以只用共变导数来定义。

偶尔,术语“共变导数”指一个一般向量丛沿着基空间的一个切向量的截面的导数;参看“联络形式”中的“向量丛”的有关章节。

给定一个函数 f {\displaystyle f} 和由下列性质定义:

注意 v u {\displaystyle \nabla _{\mathbf {v} }{\mathbf {u} }} 依赖于v在点的值以及u在的一个邻域的值,因为最有一个性质乘积法则的要求。这表示共变导数不是一个张量。

给定余向量场(或者说1-形式) α {\displaystyle \alpha } ,其中Γk 是分量(参看爱因斯坦记号)。 要给定共变导数,给定每个基向量场e 沿着e的共变导数就可以了

系数Γki j称为克里斯托费尔符号。然后使用定义中的规则,我们发现对于一般的向量场 v = v i e i {\displaystyle {\mathbf {v} }=v^{i}e_{i}} 的分量的变化。特别的有

用语言描述的话: 共变导数是一般的沿着坐标的导数加上关于坐标改变的校正项。在物理教科书中,共变导数有时只用这个方程中的分量形式表述。

一个常用的记法是,用一个分号表示共变导数,而用一个逗号表示普通导数。在这个记号下,我们把同样的公式写作::

这再次表明了向量场的共变导数不仅仅是从沿着坐标的微分中得到 v i , j {\displaystyle v^{i}{}_{,j}} ,而且是通过 v k Γ i k j {\displaystyle v^{k}\Gamma ^{i}{}_{kj}} 依赖于向量v本身的。

相关

  • 二硫化碳二硫化碳是一种分子式为CS2的无色有毒液体。纯的二硫化碳有类似氯仿的芳香甜味,但是通常不纯的工业品因为混有其他硫化物(如羰基硫等)而变为微黄色,并且有令人不愉快的烂萝卜味
  • 往生咒往生咒,全称《拔一切业障根本得生净土陀罗尼》,又称四甘露咒、往生净土神咒、阿弥陀佛根本秘密神咒,是佛教净土宗的重要咒语。拔一切业障根本得生净土陀罗尼,顾名思义,此咒包含两
  • 巴利·马歇尔巴里·马歇尔(英语:Barry J. Marshall,1951年9月30日-),生于澳洲西部城市卡尔古利,是西澳大学临床微生物学教授。他的主要成就是证明了幽门螺旋杆菌是造成大多数胃溃疡和胃炎的原因
  • 蚓蜥蚓蜥,又名蠕蜥,是蚓蜥类(学名:Amphisbaenia)动物的总称,与有鳞目中的正蜥类是近缘物种。蚓蜥类中有很多种蚓蜥拥有深红色身体,且外表看起来非常像蚯蚓和蚓螈。蚓蜥主要分布于非洲和
  • 四邑方言四邑方言或称冈州方言,即粤语支四邑片或称冈州片,主要分布于广东省江门市蓬江区、江海区、新会区、台山市、开平市、恩平市、鹤山市、珠海市斗门区、金湾区、中山市古镇镇以及
  • 医事专业清单按照医学的学科,医事各种专业科目清单如下列(按照英文字母排列)。
  • 各国捕捞与养殖水产品产量列表以下2005年渔业与水产养殖产品产量数据(单位:公吨),是由联合国粮农组织提供。
  • 阿方斯·贝蒂荣阿方斯·贝蒂荣(法语:Alphonse Bertillon,1853年4月24日-1914年2月13日)是法国的一位警官和生物识别技术研究者。他创建了身体测量的识别系统,将人体测量学应用于执法。人体测量学
  • 共产党和工人党情报局共产党和工人党情报局(英语:Communist Information Bureau,缩写为Cominform),是一个共产主义运动的国际组织。二战结束冷战开始时,为对抗以美国为首的西方国家,在斯大林和铁托的倡
  • 配角配角是指故事中的一个角色,虽然不是情节主要聚焦的角色,但在故事中屡次提及、而不仅只是一个闲角。在某些作品中,配角可能会有一段自己的背景故事,可能与主角有关、也可能完全独