基灵矢量场

✍ dations ◷ 2025-10-22 06:11:22 #黎曼几何,广义相对论,李代数

基灵矢量场,基灵矢量或基灵矢量场(Killing vector 或 Killing vector field),以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。

如果度量(度规)的系数 g μ ν {\displaystyle g_{\mu \nu }\,} 是一个基灵场,如果度量关于 李导数为零:

用列维-奇维塔联络表示,即

对所有的矢量与。在局部坐标系中,这便是基灵方程:

该条件表示成共变形式,从而只要在一个特定的坐标系中成立就在所有坐标系下成立。

一个基灵场由其在一点的矢量和其梯度(即这个场在该点的所有共变导数)决定。

两个基灵场的李括号仍然是一个基灵场。从而流形上的基灵场组成了上一个李代数。如果紧或者完备这便是流形的等距同构群的李代数。

对紧流形:

基灵矢量场可以推广到共形基灵矢量场,定义为:

对某个纯量 λ {\displaystyle \lambda \,} ,使得 T {\displaystyle \nabla T\,} 的对称化中与迹无关的部分为零。

在广义相对论中,基灵矢量与时空的对称性紧密联系。简单说来,当一个时空流形在特定变换下具有几何不变性时,我们称这种时空流形具有对称性;也就是说度规在这种变换下是保持形式不变的。一个张量场可能会具有多种不同的对称性,例如闵可夫斯基时空的平直度规在平移变换(包含四种基本对称操作)及洛伦兹变换(包含六种基本对称操作)下保持不变,即对于闵可夫斯基度规

所具有的两种对称性表示为

从闵可夫斯基时空的平移对称性表示中我们可以看到,度规的系数 η μ ν {\displaystyle \eta _{\mu \nu }\,} (1或-1)和平移的坐标函数 x ν {\displaystyle x^{\nu }\,} 无关。这个性质可以推广到一般度规 g μ ν {\displaystyle g_{\mu \nu }\,} 下的平移对称性,即对于某些确定的坐标函数 x σ {\displaystyle x^{\sigma }\,} ,如果 σ g μ ν = 0 {\displaystyle \partial _{\sigma }g_{\mu \nu }=0\,} 对所有的 μ {\displaystyle \mu \,} ν {\displaystyle \nu \,} 成立,则度规在 x σ {\displaystyle x^{\sigma }\,} 方向上具有平移对称性:

对类时的测地线而言,测地线方程可以写成动量的形式,即对于粒子的四维动量 p μ = m U μ {\displaystyle p^{\mu }=mU^{\mu }\,} ,测地线方程为

其中 p λ {\displaystyle p^{\lambda }\,} 的上标可以降为下标而方程保持形式不变,根据协变导数的定义方程等价于

左边第一项的含义是动量如何沿测地线变化:

而第二项可以化为如下形式:

其中第二步到第三步是用了 p λ p ν {\displaystyle p^{\lambda }p^{\nu }\,} 的对称性,从而对称的两项可以消去。综合上面的结果我们得到

从这个方程我们可知,对于度规 g ν λ {\displaystyle g_{\nu \lambda }\,} 若在坐标方向 μ {\displaystyle \mu \,} 上偏导数为零,则沿坐标方向 μ {\displaystyle \mu \,} 的动量 p μ {\displaystyle p^{\mu }\,} 不随时间变化,即动量分量 p μ {\displaystyle p^{\mu }\,} 是一个守恒量,即

这个守恒律虽然是从类时的测地线得到的,它对所有的测地线都成立。

我们在上节中看到,当度规与坐标的某一个分量无关时,度规在这个分量上则具有平移对称性。现在从这个事实出发将其写成协变的形式,即当一个一般的度规 g μ ν {\displaystyle g_{\mu \nu }\,} 与某一坐标分量 x σ {\displaystyle x^{\sigma }\,} 无关时,定义矢量 σ {\displaystyle \partial _{\sigma }\,} 将其标记为 K {\displaystyle {\boldsymbol {K}}\,}

推导中一般写成分量的形式:

这里我们称 K μ {\displaystyle {K}^{\mu }} 是度规对称性的生成矢量,即在这个矢量的方向上的无穷小变换操作下坐标保持不变。在这个矢量的作用下,守恒量可以写成协变的形式,例如

从前文的推导我们已知,若 p μ {\displaystyle p^{\mu }\,} 是沿测地线的(标量)守恒量,则它沿测地线的方向导数为零,用生成矢量的形式写出来则得到

将右面的式子作展开得到

从第一步到第二步中第一项消去的原因是测地线方程,而第二步到第三步是由于 μ {\displaystyle \mu \,} ν {\displaystyle \nu \,} 的对称性。

由此可得到结论:对于任何满足方程 ( μ K ν ) = 0 {\displaystyle \nabla _{(\mu }K_{\nu )}=0\,} 的矢量 K ν {\displaystyle K_{\nu }\,} ,都对应着沿测地线的守恒量 K ν p ν {\displaystyle K_{\nu }p^{\nu }\,}

左面的方程 ( μ K ν ) = 0 {\displaystyle \nabla _{(\mu }K_{\nu )}=0\,} 叫做基灵方程,而满足这个方程的矢量场 K ν {\displaystyle K_{\nu }\,} 叫做基灵矢量场或直接称作基灵矢量。基灵矢量的形式与度规的坐标选取有关,虽然上文的推导过程中基灵矢量的形式是 K = σ {\displaystyle {\boldsymbol {K}}=\partial _{\sigma }\,} ,这是由选取坐标系的特殊性决定的,在其他一般化的坐标系选取下它会具有不同的形式;但无论如何却总能找到一个特定的坐标系使对应的基灵矢量满足如 K = σ {\displaystyle {\boldsymbol {K}}=\partial _{\sigma }\,} 的形式。

从基灵矢量的概念可进一步推广到基灵张量,即满足方程

l {\displaystyle l\,} 阶张量 K ν 1 ν 2 . . . ν l {\displaystyle K_{\nu _{1}\nu _{2}...\nu _{l}}\,} 对应有守恒量 K ν 1 ν 2 . . . ν l p ν 1 ν 2 . . . ν l {\displaystyle {K}_{\nu _{1}\nu _{2}...\nu _{l}}p^{\nu _{1}\nu _{2}...\nu _{l}}\,}

度规本身就是一个基灵张量,在膨胀宇宙模型中,弗里德曼-勒梅特-罗伯逊-沃尔克度规也具有类时的基灵张量。

基灵矢量的协变导数与黎曼张量直接联系,彼此关系为

与里奇张量的关系为

从这两个关系、比安基恒等式以及基灵方程可推出里奇标量在沿基灵矢量场的方向导数为零,这是其度规在这些方向上具有几何不变性的体现:

动量守恒是空间平移不变性的体现,而能量守恒则是时间平移不变性的体现。借助于一个类时的基灵矢量我们能够定义一个全部时空的守恒能量:从基灵矢量 K ν {\displaystyle K_{\nu }\,} 和能量-动量张量 T μ ν {\displaystyle T_{\mu \nu }\,} 能够定义一个流

这个流是一个守恒量:

第一项为零是由于基灵方程,而第二项为零是由于 T μ ν {\displaystyle T_{\mu \nu }\,} 的守恒。

K ν {\displaystyle K_{\nu }\,} 是一个类时的基灵矢量时,可以通过对这个守恒流在整个类空的超平面 Σ {\displaystyle \Sigma \,} 内积分从而定义时空中的总能量:

其中 γ i j {\displaystyle \gamma _{ij}\,} 是超平面 Σ {\displaystyle \Sigma \,} 的诱导度规,而 n μ {\displaystyle n_{\mu }\,} 是其法向矢量。这实际是广义相对论中柯玛质量的定义,在膨胀宇宙模型中时空中的总能量一般并不是守恒的,这与膨胀宇宙的度规是时间的函数有关。如果存在一个类时的基灵矢量,则度规与时间无关,从而存在一个守恒的能量定义。

相关

  • 乙型交感神经接受体阻断剂β受体阻断药(英语:Beta blockers),又称Beta受体阻断药、β受体阻断剂、β受体阻滞剂、β受体拮抗剂或β阻断药、乙型阻断剂,是一类用来治疗心律不齐、防止心脏病发作后的二次心
  • 顶复器顶质体(英语:apicoplast)是大部分顶复门生物共有的非光合作用的细胞器,存在于多种顶复门生物中,包括引发疟疾的寄生虫——恶性疟原虫(Plasmodium falciparum)等,但在隐孢子虫属(英语:C
  • 施蒂利亚公国施蒂利亚公国(德语:Herzogtum Steiermark ; 斯洛文尼亚语:Vojvodina Štajerska ; 匈牙利语:Stájer Hercegség)是一个曾经存在于现今奥地利南部与斯洛文尼亚北部地区的公国。
  • 西雅图超音速西雅图超音速(英语:Seattle SuperSonics),是一支前美国NBA篮球队。其主场位于华盛顿州西雅图。2008年球季完结后,班主班里德迁移并改名为俄克拉何马城雷霆,令西雅图从此失去了一支
  • 手拭手拭(日语:手拭/てぬぐい ),是日本传统的棉制毛巾。通常大小约35厘米×90厘米,几乎总是织上一些图案。它可以用于毛巾、抹布,但通常作为头带、纪念品、装饰品或用于包装物品如瓶子
  • 休·洛夫廷休·约翰·洛夫廷(Hugh John Lofting,1886年1月14日-1947年9月26日)是一位英国作家,创造了经典儿童文学形象杜立德医生。休·洛夫廷出生于伯克郡梅登黑德,父母是英格兰和爱尔兰人
  • 猴子自拍照著作权争议猴子自拍照著作权争议(英语:monkey selfie copyright dispute)是因黑猴使用英国自然摄影师大卫·斯莱特(David Slater)的摄影器材拍摄一系列自拍照,所引发的争议。这些图像存放于
  • A翼战机A翼战机(英语:A-wing)是星际大战里的星际战斗机,由夸特动力船坞设计并制造,夸特汲取了克隆人战争时期星际战斗机的一些设计元素。A翼战机是一款由夸特设计并制造的高速星际截击机
  • 哈萨克斯坦农业哈萨克斯坦农业只是哈萨克斯坦经济的一小部分。农业对该国国内生产总值的贡献在10%以下——为6.7%。该国超过70%的土地被用于农作物和畜牧业,而北美用于农作物的土地比例相对
  • 荫山征彦荫山征彦(1975年10月16日-),在台湾发展的日籍演员。