无穷

✍ dations ◷ 2025-02-24 00:14:43 #集合论,哲学理论,神学,无穷

N Z Q R C {\displaystyle \mathbb {N} \subseteq \mathbb {Z} \subseteq \mathbb {Q} \subseteq \mathbb {R} \subseteq \mathbb {C} } 进数
数学常数

圆周率 π = 3.141592653 {\displaystyle \pi =3.141592653\dots } ,() ≥ 0,则

无穷大也可以用来描述无穷级数:

若将标记为 + {\displaystyle +\infty } 的大小  | x | {\displaystyle |x|} z 0 = {\displaystyle {\frac {z}{0}}=\infty } ,因此可以将亚纯函数对映到黎曼球面上,只要将极点对应到无穷远点 {\displaystyle \infty } 即可。复变函数的定义域也可以加入无穷远点,例如莫比乌斯变换的函数。

一般讲无穷指的都是无穷大,但是无穷小也是一种无穷。通过 y = 1 x {\displaystyle y={\frac {1}{x}}} 的映射即可把无穷大映射为无穷小。在微积分中,常用高阶无穷小的概念。

无穷远点是一个加在实轴上后得到实射影直线 R P 1 {\displaystyle \mathbb {R} P^{1}} 的点。

在集合论中对无穷有不同的定义。德国数学家康托尔提出,对应于不同无穷集合的元素的个数(基数),有不同的“无穷”。

这里比较不同的无穷的“大小”的时候,唯一的办法就是通过是否可以建立“一一对应关系”来判断,而抛弃了欧几里得“整体大于部分”的看法。例如整数集和自然数集由于可以建立一一对应的关系,它们就具有相同的基数。

例如,

无限维的空间常用在几何学及拓扑学中,尤其是在分类空间(英语:classifying space),也就是Eilenberg−MacLane空间(英语:Eilenberg−MacLane space)。常见的例子包括无限维的复射影空间(英语:complex projective space)K(Z,2),以及无限维的实射影空间K(Z/2Z,1)。

分形的结构可以重复的放大,分形可以无限次的放大,但不会变的圆滑,而且仍维持原有的结构,分形的周长是无限的,有些的面积无限,但有些的面积却是有限。像科赫曲线就是有无限周长和有限面积的例子。

利奥波德·克罗内克怀疑无限的概念,也怀疑1870年代及1880年代时数学家使用无限的方式。这种怀疑主义形成一种称为有限主义的数学哲学,是属于数学结构主义及数学直觉主义中的一种极端形式。

在物理上,实数的近似会用在连续量(英语:Continuum (theory))的量测上,自然数的近似会用在离散的量测上。因此科学家假设没有可观察量会到无穷的数值,这是因为科学家很自然的,事实上已经是默认的接受了这样的事情:即在真实的物理场景里,是不存无穷大的可观测物理量的。在例如在扩展的实轴上取一个无穷的值,或是需要计算某个无穷次事件的次数。因此会预设没有任何物体会有无穷的质量或是能量。有些事物的概念和无限有关,例如无限平面波,但现今尚没有方法可以由实验产生无限平面波。

IEEE 754浮点数标准中定义了正无限大及负无限大,定义为溢位、除以零或其他异常程序的结果。

像Java及J语言等编程语言允许在程式中直接用类似常数的方式存取正负无限大。正负无限大可以作为最大元,因为比所有其他的数都大(或是小)。正负无限大也可以做为像排序、搜寻或窗函数等算法中的哨兵值(英语:sentinel value),找到这个值时可以结束计算。

在一些没有最大或最小元素,但允许关系运算子多载的编程语言中,程序员也可以“创建”最大及最小元素。若语言不允许直接存取最大或最小元素,但有浮点数的形态,也可以用特定的运算产生正负无限大,再进行其他处理。

微软的 Visual Studio 用无穷大符号作为图标。

透视艺术使用了消失点或是无穷远点的概念.也就是放在观察者无穷远处的一个点。因此画家可以绘制有现实感空间及距离的作品。艺术家莫里茨·科内利斯·埃舍尔就常将无穷的概念用在他的作品中。

认知科学家乔治·莱考夫将数学及科学中无限的概念视为一个隐喻。这个观点是基于简单的无限隐喻,定义为一直递增的数列<1,2,3,...>。

无限的符号常浪漫的表示永恒的爱,许多现代的珠宝就在其造型中加入无限的符号。

Crypton Future Media 的角色主唱系列中 CV-03 巡音流歌的人物形象即包含无穷大的符号以象征“循环、巡回”之意。

相关

  • 基因本体基因本体论(Gene ontology ,GO)是一种系统地对物种基因及其产物属性进行注释的方法和过程。它的目标是:1)维护和发展有限的基因及其产物属性描述的词汇;2)注释基因及其产物,同化和传
  • 日德兰半岛日德兰半岛(德语:Jütland;丹麦语:Jylland;低地德语:Jötlann)是欧洲北部的半岛,位于北海和波罗的海之间,构成丹麦国土的大部分。西和北为北海和斯卡格拉克海峡,东为卡特加特海峡和小
  • 北大西洋洋流北大西洋漂流(North Atlantic Drift),又称为北大西洋洋流(North Atlantic Current)或北大西洋暖流,为墨西哥湾暖流向北大西洋东北伸延的一个强力温暖洋流。北大西洋洋流在爱尔兰的
  • 睡衣睡衣 (又称寝衣) 是专供人们睡觉时穿着的服装,一般由宽松舒适的上衣和裤子组成。“睡衣”一词在希腊语和乌尔都语里,指的都是晚上在房间内穿的一种肥大的裤子。古代作为贵族专有
  • 梵蒂冈银行宗教事务银行(意大利语:Istituto per le Opere di Religione)又名梵蒂冈银行,是一间位于梵蒂冈的私人银行,并不对外开放,只负责管理梵蒂冈的金融资产。此银行由教宗庇护十二世于19
  • 贝纳迪诺·里瓦达维亚贝纳迪诺·德拉·特里尼达德·冈萨雷斯·里瓦达维亚·伊·里瓦达维亚(Bernardino de la Trinidad Gónzalez Rivadavia y Rivadavia,1780年5月20日-1845年9月2日),阿根廷共和国第
  • 莫比尔莫比尔(英语:Mobile,/moʊˈbiːl/,moh-BEEL,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Co
  • 史丹利杯斯坦利杯(Stanley Cup)成立于1893年,为北美国家冰球联盟的最高奖项,在每个赛季季后赛后颁给联盟的冠军队伍。以弗雷德里克·斯坦利之名命名,是为纪念其为冰球运动的贡献而设。为
  • 约翰·奥基夫约翰·奥基夫(英语:John O'Keefe,1939年11月18日-),爱尔兰裔美国暨英国籍神经科学家,伦敦大学学院解剖学系和认知神经科学研究所的教授。奥基夫在纽约长大,于纽约市立大学获学士学位
  • 埃德·马基爱德华·约翰·“埃德”·马基(英语:Edward John "Ed" Markey、1946年7月11日-),是一位美国民主党政治人物,自2005年成为马萨诸塞州联邦参议院议员。他在美国参议院的2013年特别选