无穷

✍ dations ◷ 2025-04-27 17:07:58 #集合论,哲学理论,神学,无穷

N Z Q R C {\displaystyle \mathbb {N} \subseteq \mathbb {Z} \subseteq \mathbb {Q} \subseteq \mathbb {R} \subseteq \mathbb {C} } 进数
数学常数

圆周率 π = 3.141592653 {\displaystyle \pi =3.141592653\dots } ,() ≥ 0,则

无穷大也可以用来描述无穷级数:

若将标记为 + {\displaystyle +\infty } 的大小  | x | {\displaystyle |x|} z 0 = {\displaystyle {\frac {z}{0}}=\infty } ,因此可以将亚纯函数对映到黎曼球面上,只要将极点对应到无穷远点 {\displaystyle \infty } 即可。复变函数的定义域也可以加入无穷远点,例如莫比乌斯变换的函数。

一般讲无穷指的都是无穷大,但是无穷小也是一种无穷。通过 y = 1 x {\displaystyle y={\frac {1}{x}}} 的映射即可把无穷大映射为无穷小。在微积分中,常用高阶无穷小的概念。

无穷远点是一个加在实轴上后得到实射影直线 R P 1 {\displaystyle \mathbb {R} P^{1}} 的点。

在集合论中对无穷有不同的定义。德国数学家康托尔提出,对应于不同无穷集合的元素的个数(基数),有不同的“无穷”。

这里比较不同的无穷的“大小”的时候,唯一的办法就是通过是否可以建立“一一对应关系”来判断,而抛弃了欧几里得“整体大于部分”的看法。例如整数集和自然数集由于可以建立一一对应的关系,它们就具有相同的基数。

例如,

无限维的空间常用在几何学及拓扑学中,尤其是在分类空间(英语:classifying space),也就是Eilenberg−MacLane空间(英语:Eilenberg−MacLane space)。常见的例子包括无限维的复射影空间(英语:complex projective space)K(Z,2),以及无限维的实射影空间K(Z/2Z,1)。

分形的结构可以重复的放大,分形可以无限次的放大,但不会变的圆滑,而且仍维持原有的结构,分形的周长是无限的,有些的面积无限,但有些的面积却是有限。像科赫曲线就是有无限周长和有限面积的例子。

利奥波德·克罗内克怀疑无限的概念,也怀疑1870年代及1880年代时数学家使用无限的方式。这种怀疑主义形成一种称为有限主义的数学哲学,是属于数学结构主义及数学直觉主义中的一种极端形式。

在物理上,实数的近似会用在连续量(英语:Continuum (theory))的量测上,自然数的近似会用在离散的量测上。因此科学家假设没有可观察量会到无穷的数值,这是因为科学家很自然的,事实上已经是默认的接受了这样的事情:即在真实的物理场景里,是不存无穷大的可观测物理量的。在例如在扩展的实轴上取一个无穷的值,或是需要计算某个无穷次事件的次数。因此会预设没有任何物体会有无穷的质量或是能量。有些事物的概念和无限有关,例如无限平面波,但现今尚没有方法可以由实验产生无限平面波。

IEEE 754浮点数标准中定义了正无限大及负无限大,定义为溢位、除以零或其他异常程序的结果。

像Java及J语言等编程语言允许在程式中直接用类似常数的方式存取正负无限大。正负无限大可以作为最大元,因为比所有其他的数都大(或是小)。正负无限大也可以做为像排序、搜寻或窗函数等算法中的哨兵值(英语:sentinel value),找到这个值时可以结束计算。

在一些没有最大或最小元素,但允许关系运算子多载的编程语言中,程序员也可以“创建”最大及最小元素。若语言不允许直接存取最大或最小元素,但有浮点数的形态,也可以用特定的运算产生正负无限大,再进行其他处理。

微软的 Visual Studio 用无穷大符号作为图标。

透视艺术使用了消失点或是无穷远点的概念.也就是放在观察者无穷远处的一个点。因此画家可以绘制有现实感空间及距离的作品。艺术家莫里茨·科内利斯·埃舍尔就常将无穷的概念用在他的作品中。

认知科学家乔治·莱考夫将数学及科学中无限的概念视为一个隐喻。这个观点是基于简单的无限隐喻,定义为一直递增的数列<1,2,3,...>。

无限的符号常浪漫的表示永恒的爱,许多现代的珠宝就在其造型中加入无限的符号。

Crypton Future Media 的角色主唱系列中 CV-03 巡音流歌的人物形象即包含无穷大的符号以象征“循环、巡回”之意。

相关

  • 人类生殖系统的同系物列表人类两性的生殖系统有相同的胚胎起源,经过分化而演变为不同的器官。以下列出了男性与女性的同源器官。生殖器于胚胎的发育的过程示意图,左侧为男性,右侧为女性。
  • 民族志实证主义 · 反实证主义(英语:Antipositivism) 结构主义 · 冲突理论 中层理论 · 形式理论 批判理论人口 · 团体 · 组织(英语:Organizational theory) · 社会化 社会性
  • 孔颖达孔颖达(574年-648年10月10日),字冲远(一作沖远、仲达、沖澹),冀州衡水(今河北衡水市)人。孔安之子,孔子三十二代孙。唐朝经学家。生于北齐后主武平五年(574年),八岁就学,曾从刘焯问学,日诵
  • 莱洛伊尔卢伊斯·弗德里科·莱洛伊尔(西班牙语:Luis Federico Leloir,法语名勒卢瓦尔,1906年9月6日-1987年12月2日),阿根廷籍法裔生物化学家。因研究了核苷酸糖及其在碳水化合物合成中的作
  • 放电静电放电,是指在某一绝缘介质的两面分别出现正电荷和负电荷,并且逐渐累积时,这时加于该绝缘介质上的电压也会同时增加,当该电压高于一定程度(击穿电压)后,这时绝缘介质会发生电击穿
  • 约翰·汉考克约翰·汉考克(John Hancock,1737年1月12日-1793年10月8日),美国革命家、政治家,富商出身。他曾于1775年-1777年任大陆会议主席, 是独立宣言的第一个签署人,美国开国元老之一。由于他
  • 婚神星婚神星(英语:3 Juno)是人类发现的第三颗小行星,也是小行星带中最大的小行星之一,是由较重的石质组成的S-型小行星。它在1804年9月1日被德国天文学家卡尔·路德维希·哈丁以一架普
  • 君王君主是指从一个家庭或家族中挑选成员来任职的国家元首或政权领袖。其职位之传承以直系血亲世袭为主,也可采选举或禅让方式产生;其中实行世袭制度者若无直系血亲之继承人,一般多
  • 化学部队美国陆军化学兵团目前的主要职责是防护化学武器、生物武器、放射性武器以及核武器。部队在第一次世界大战建立之初时名为美国化学战服务(U.S. Chemical Warfare Service, CWS
  • 济青高速公路青岛-银川高速公路,简称青银高速,中国国家高速公路网编号为G20,原是编号为G035的五纵七横国道主干线的一条横向线。起点为山东省青岛市,主要途径潍坊、淄博、济南、石家庄、太原