连续性

✍ dations ◷ 2024-12-22 19:40:16 #连续性
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。举例来说,考虑描述一棵树的高度随时间而变化的函数 h ( t ) {displaystyle h(t)} ,那么这个函数是连续的(除非树被砍断)。又例如,假设 T ( P ) {displaystyle T(P)} 表示地球上某一点 P {displaystyle P} 的空气温度,则这个函数也是连续的。事实上,古典物理学中有一句格言:“自然界中,一切都是连续的。”相比之下,如果 M ( t ) {displaystyle M(t)} 表述在时间t的时候银行账户上的钱币金额,则这个函数无论在存钱或者取钱的时候都会有跳跃,因此函数 M ( t ) {displaystyle M(t)} 是不连续的。最基本也是最常见的连续函数是定义域为实数集的某个子集、取值也是实数的连续函数。例如前面提到的花的高度,就是属于这一类型。这类函数的连续性可以用直角坐标系中的图像来表示。一个这样的函数是连续的,如果粗略地说,它的图像为一个单一的不破的曲线,并且没有间断、跳跃或无限逼近的振荡。严格来说,设 f {displaystyle f} 是一个从实数集的子集 I ⊂ R {displaystyle mathbf {I} subset mathbb {R} } 射到 J ⊂ R {displaystyle mathbf {J} subset mathbb {R} } 的函数: f : I ⟶ J {displaystyle f:mathbf {I} longrightarrow mathbf {J} } 。 f {displaystyle f} 在 I {displaystyle mathbf {I} } 中的某个点 c {displaystyle c} 处是连续的当且仅当以下的两个条件满足:我们称函数到处连续或处处连续,或者简单的称为连续,如果它在其定义域中的任意一点处都连续。更一般地,当一个函数在定义域中的某个子集的每一点处都连续时,就说这个函数在这个子集上是连续的。不用极限的概念,也可以用下面所谓的 ε − δ {displaystyle varepsilon -delta } 方法来定义实值函数的连续性。仍然考虑函数 f : I ⟶ J {displaystyle f:mathbf {I} longrightarrow mathbf {J} } 。假设 c {displaystyle c} 是 f {displaystyle f} 的定义域中的元素。函数 f {displaystyle f} 被称为是在 c {displaystyle c} 点连续当且仅当以下条件成立:对于任意的正实数 ε > 0 {displaystyle varepsilon >0} ,存在一个正实数 δ > 0 {displaystyle delta >0} 使得对于任意定义域中的 x ∈ I {displaystyle xin mathbf {I} } ,只要 x {displaystyle x} 满足 c − δ < x < c + δ {displaystyle c-delta <x<c+delta } ,就有 f ( c ) − ε < f ( x ) < f ( c ) + ε {displaystyle f(c)-varepsilon <f(x)<f(c)+varepsilon } 成立。连续性的“ ε − δ {displaystyle varepsilon -delta } 定义”由柯西首先给出。更直观地,函数 f {displaystyle f} 是连续的当且仅当任意取一个 J {displaystyle mathbf {J} } 中的点 f ( c ) {displaystyle f(c)} 的邻域 Ω {displaystyle Omega } ,都可以在其定义域 I {displaystyle mathbf {I} } 中选取点 x {displaystyle x} 的足够小的邻域,使得 x {displaystyle x} 的邻域在函数 f {displaystyle f} 上的映射下都会落在 f ( c ) {displaystyle f(c)} 的邻域 Ω {displaystyle Omega } 之内。以上是针对单变量函数(定义域在 R {displaystyle mathbb {R} } 上的函数)的定义,这个定义在推广到多变量函数时也是成立的。度量空间以及拓扑空间之间的连续函数定义见下一节。如果两个函数 f {displaystyle f} 和 g {displaystyle g} 是连续的, λ {displaystyle lambda } 为一个实数,那么 f + g {displaystyle displaystyle f+g} 、 λ f {displaystyle displaystyle lambda f} 和 f g {displaystyle displaystyle fg} 都是连续的。所有连续函数的集合构成一个环,也构成一个向量空间(实际上构成一个代数)。如果对于定义域内的所有 x {displaystyle x} ,都有 g ( x ) ≠ 0 {displaystyle g(x)neq 0} ,那么 f g {displaystyle {frac {f}{g}}} 也是连续的。两个连续函数的复合函数 f ∘ g {displaystyle fcirc g} 也是连续函数。如果实函数 f {displaystyle f} 在闭区间 [ a , b ] {displaystyle } 内连续,且 k {displaystyle k} 是某个 f ( a ) {displaystyle f(a)} 和 f ( b ) {displaystyle f(b)} 之间的数,那么存在某个 [ a , b ] {displaystyle } 内的 c {displaystyle c} ,使得 f ( c ) = k {displaystyle f(c)=k} 。这个定理称为介值定理。例如,如果一个小孩在五岁到十岁之间身高从1米增长到了1.5米,那么期间一定有某一个时刻的身高正好是1.3米。如果 f {displaystyle f} 在 [ a , b ] {displaystyle } 内连续,且 f ( a ) {displaystyle f(a)} 和 f ( b ) {displaystyle f(b)} 一正一负,则中间一定有某一个点 c {displaystyle c} ,使得 f ( c ) = 0 {displaystyle f(c)=0} 。这是介值定理的一个推论。如果 f {displaystyle f} 在闭区间 [ a , b ] {displaystyle } 内连续,则它一定取得最大值,也就是说,总存在 c ∈ [ a , b ] {displaystyle cin } ,使得对于所有的 x ∈ [ a , b ] {displaystyle xin } ,有 f ( c ) ⩾ f ( x ) {displaystyle f(c)geqslant f(x)} 。同样地,函数也一定有最小值。这个定理称为极值定理。(注意如果函数是定义在开区间 ( a , b ) {displaystyle (a,b)} 内,则它不一定有最大值和最小值,例如定义在开区间(0,1)内的函数 f ( x ) = 1 x {displaystyle f(x)={frac {1}{x}}} 。)如果一个函数在定义域中的某个点 f ( c ) {displaystyle f(c)} 可微,则它一定在点 c {displaystyle c} 连续。反过来不成立;连续的函数不一定可微。例如,绝对值函数在点 c = 0 {displaystyle c=0} 连续,但不可微。现在考虑从度量空间 ( X , d X ) {displaystyle (X,d_{X})} 到另一个度量空间 ( Y , d Y ) {displaystyle (Y,d_{Y})} 的函数 f {displaystyle f} 。这个定义可以用序列与极限的语言重述:后一个条件可以减弱为:如上连续函数的定义可以自然地推广到一个拓扑空间到另一拓扑空间的函数:对拓扑空间 X {displaystyle X} 与 Y {displaystyle Y} ,函数 f : X → Y {displaystyle f:Xrightarrow Y} 是连续的当且仅当任何开集 V ⊆ Y {displaystyle Vsubseteq Y} 的逆像 f − 1 ( V ) {displaystyle f^{-1}(V)} 是 X {displaystyle X} 中开集。函数的连续性质在很长时间内被认为是当然的。第一个比较严格的定义归功于伯纳德·波尔查诺。他在1817年用德文写下的定义是这样的:函数 f {displaystyle f} 在 x {displaystyle x} 点是连续的,当且仅当:然后波尔查诺在证明中值定理时用 ϵ {displaystyle epsilon } 来表示所谓“事先给定的量”。六年以后,柯西在1823年也给了一个定义,但此定义还不如波尔查诺前面给出的定义清楚:这里的无穷小指的是:一个量的“绝对值不断而无止境地减小以至于小于任何一个事先给定的量”。现代的 ϵ − δ {displaystyle epsilon -delta } 定义只要把波尔查诺在其证明里的写法中“事先给定的量”用 ϵ {displaystyle epsilon } 来代替就可以了。这个现代定义第一次公开发表在刊物上是1874年由魏尔斯特拉斯的一个学生海涅根据魏尔斯特拉斯的讲义写的。

相关

  • 自由市场自由市场是经济学术语,指金钱、货物的流动完全是根据市场自然的状况而进行的,政府不介入控制。自由市场经济就是以“市场主导”作为经济体系运作的原则。自由市场的原则是希望
  • 骨盆髋(拉丁语:pelvis),又称腰带、骨盆、盘骨,是一个骨骼构造,位于脊椎末端,连接脊柱和股骨,与四足动物的后肢、双足动物的下肢相连。股骨与腰带在臀部连接处形成髋关节,它是球窝关节。健
  • 萨福克郡萨福克郡(英语:Suffolk),,英国英格兰东部的郡,东临北海。以人口计算,伊普斯维奇是第1大镇(亦是郡治),洛斯托夫特是第2大镇,贝里圣埃德蒙兹是第3大镇。萨福克没有包含单一管理区,无论把它
  • 万丹省万丹省(印尼语:Banten)是印度尼西亚的一个省,位于爪哇岛最西部,隔巽他海峡与苏门答腊岛相望。2000年自西爪哇省分出。面积9,160.7平方公里。首府西冷。下辖三市和四区。2005年人
  • 加州承载比加州承载比(California bearing ratio,缩写为CBR)是一种用来评估道路基层材料机械强度的渗透测试。它是在二战前由加州公路局研发的。该试验的方法是测量用一标准面积(3in2)的
  • 夊部,为汉字索引里为部首之一,康熙字典214个部首中的第三十五个(三划的则为第六个)。夊部通常是从下方为部字,且无其他部首可用者将部首归为夊部。要注意的是,在繁体,夊部与夂部不
  • 联邦交通运输与通讯部俄罗斯联邦交通运输部(俄语:Министерство транспорта Российской Федерации)是俄罗斯负责制定航空、海运、水运、公路运输、铁路运
  • 硅烯硅烯(英语:Silicene)是一种类似于石墨烯的硅单质。尽管理论研究者推测存在这种物质并猜测了它的性质,研究者在十多年之后的2010年才观测到了具有这种结构的硅单质。
  • 张俐娜张俐娜(1940年8月14日-)福建光泽人,中国化学家,武汉大学化学与分子科学学院教授。因高分子溶解方面的卓越贡献,于2011年获得化学奖项安塞姆·佩恩奖,是中国大陆获得该奖项的第一人
  • 梯度在向量微积分中,梯度(gradient)是一种关于多元导数的概括。平常的一元(单变量)函数的导数是标量值函数,而多元函数的梯度是向量值函数。多元可微函数 f