纯旋量

✍ dations ◷ 2025-11-04 02:56:58 #旋量

在表示论这个数学领域中,特殊正交群的旋量表示中,纯旋量(pure spinor 或单旋量 simple spinor)是能被克利福德代数的最大可能子空间零化的旋量。它们在1930年代被埃利·嘉当为了分类复结构而引进。纯旋量被引入理论物理,1960年代在罗杰·彭罗斯的推动下在自旋几何的研究中变得愈发重要起来;它们在彭罗斯的扭量理论的研究中成为基本对象。

考虑一个复向量空间 C2 具有偶复维数 与一个二次形式 ,将向量 映为复数 。克利福德代数 Cliff2n 是由 C2 中向量的乘积满足关系

生成的环。

旋量是克利福德代数上的模,特别地 C2n 在旋量空间上有一个作用。零化一个给定旋量 ψ 的 C2 的子集是其一个复子空间 Cm。如果 ψ 不等于零则 小于或等于 ;如果 等于 则 ψ 称为一个纯旋量。

任何纯旋量被 C2n 的一个半维数子空间零化。反之给定一个半维数子空间在差一个复常数相乘的意义下也可以确定其零化的纯旋量。纯旋量在差一个复数相乘的意义下定义为射影纯旋量。射影纯旋量空间是齐性空间

不是所有旋量都是纯的。一般地,纯旋量可以通过称为纯旋量约束的一系列二次方程从非纯旋量中分离出来。不过,实维数不大于 6 的旋量都是纯的;在 8 维,在射影的意义下只有一个纯旋量约束;在 10 维,与超弦理论相关的情形,有 10 个约束

这里 Γμ 是伽玛矩阵,代表生成克利福德代数的向量 C2n。一般地有

个约束。

最近纯旋量在弦理论中受到关注。2000年,巴西圣保罗 Fisica Teorica 研究所教授 Nathan Berkovits 在论文《弦的超庞加莱共变量子化》中引入纯旋量形式化。这个形式化是目前所知惟一关于时空与世界面(en:Worldsheet)超对称同时共变的弦的量子化。2002年,奈杰尔·希钦(Nigel Hitchin)在《广义卡拉比-丘流形》一文中提出广义卡拉比-丘流形,其中广义复结构用一个纯旋量定义。这些空间描述了弦理论中通量紧化的几何。

相关

  • 血红蛋白血红蛋白,又称血红素,俗称血色素,(Hemoglobin(美国) 或 haemoglobin(英国) (/ˈhiːməˌɡloʊbᵻn, ˈhɛ-, -moʊ-/);缩写︰Hb 或 Hgb)是高等生物体内负责运载氧的一种蛋白质。可
  • 冷凝器冷凝器是一个可以将气态物质凝结成液态的设备,是常见的热交换器,一般会利用冷却的方式使物质凝结。凝结过程中物质放出潜热及部分显热,使冷凝器的冷媒温度昇高。依冷凝器的需求
  • 四氢孕酮孕烷醇酮(英语:Pregnanolone)也被称为四氢孕酮(英语:tetrahydroprogesterone,THP)可指:
  • 碳1212C是质量数为12的碳原子,其质子数和中子数都为6,它是碳元素的一种同位素,在世界现存碳元素中占比98.89%,是最常见的碳同位素。在2019年5月20日国际单位制基本单位的重新定义之
  • 逃生梯逃生梯又称消防梯,为一种建筑设施作为火灾时的逃生通道,各国消防法多有规定设置,并列入建筑消防执照检查项目。逃生梯通常别于主要日常楼梯,以做为第二通道的特性设置,美国有诸多
  • 355年
  • 孤立语言孤立语言,一般指与其他任何语言不存在亲属关系的自然语言,无法分类到任何已知语系中。知名的孤立语言如朝鲜语和日语(上述两者均存在争议)。孤立语言可以看做特殊的未分类语言,即
  • 朗布尔沙达尔乌帕齐拉朗布尔沙达尔乌帕齐拉(孟加拉语:রংপুর সদর,英语:Rangpur Sadar Upazila)是孟加拉国朗布尔县的一个乌帕齐拉,位于朗布尔专区的朗布尔县。。据1991年孟加拉国人口普查(英语:19
  • 克里穆尔达自治市克里穆尔达自治市(拉脱维亚语:Krimuldas novads),是拉脱维亚的一个自治市,设立于2009年,位于该国中北部。人口5803人,面积339.1平方公里,人口密度约17人/km2。
  • 加图来信加图来信(英语:Cato's Letters),是由英国作家约翰·特伦查德(英语:John Trenchard (writer))和托马斯·戈登(英语:Thomas Gordon (writer))所写文集,该文集最初以加图(公元前85-46)为笔名