库普-库珀施密特方程(Kaup-Kupershmidt Equation)是一个非线性偏微分方程:
∂ 4 u ( x , t ) ∂ x 4 + ∂ u ( x , t ) ∂ x + 45 ( ∂ u ( x , t ) ∂ x ∗ u ( x , t ) 2 − ( 75 / 2 ) ∗ ∂ 2 u ( x , t ) ∂ x 2 ∗ ∂ u ( x , t ) ∂ x − 15 ∗ u ( x , t ) ∗ ∂ 3 u ( x , t ) ∂ x 3 {\displaystyle {\frac {\partial ^{4}u(x,t)}{\partial x^{4}}}+{\frac {\partial u(x,t)}{\partial x}}+45({\frac {\partial u(x,t)}{\partial x}}*u(x,t)^{2}-(75/2)*{\frac {\partial ^{2}u(x,t)}{\partial x^{2}}}*{\frac {\partial u(x,t)}{\partial x}}-15*u(x,t)*{\frac {\partial ^{3}u(x,t)}{\partial x^{3}}}}
利用Maple软件包TWSolution,随所选定展开函数不同,可得多种行波解
g := u ( x , t ) = − ( 2 / 3 ) ∗ ( − ( 1 / 2 ) ∗ s q r t ( 2 ) − ( 1 / 2 ∗ I ) ∗ s q r t ( 2 ) ) 2 + ( − ( 1 / 2 ) ∗ s q r t ( 2 ) − ( 1 / 2 ∗ I ) ∗ s q r t ( 2 ) ) 2 ∗ t a n h ( C 1 + ( − ( 1 / 2 ) ∗ s q r t ( 2 ) − ( 1 / 2 ∗ I ) ∗ s q r t ( 2 ) ) ∗ x + C 3 ∗ t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = − ( 2 / 3 ) ∗ ( − ( 1 / 2 ) ∗ s q r t ( 2 ) + ( 1 / 2 ∗ I ) ∗ s q r t ( 2 ) ) 2 + ( − ( 1 / 2 ) ∗ s q r t ( 2 ) + ( 1 / 2 ∗ I ) ∗ s q r t ( 2 ) ) 2 ∗ t a n h ( C 1 + ( − ( 1 / 2 ) ∗ s q r t ( 2 ) + ( 1 / 2 ∗ I ) ∗ s q r t ( 2 ) ) ∗ x + C 3 ∗ t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = − ( 2 / 3 ) ∗ ( ( 1 / 2 ) ∗ s q r t ( 2 ) − ( 1 / 2 ∗ I ) ∗ s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) ∗ s q r t ( 2 ) − ( 1 / 2 ∗ I ) ∗ s q r t ( 2 ) ) 2 ∗ t a n h ( C 1 + ( ( 1 / 2 ) ∗ s q r t ( 2 ) − ( 1 / 2 ∗ I ) ∗ s q r t ( 2 ) ) ∗ x + C 3 ∗ t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = − ( 2 / 3 ) ∗ ( ( 1 / 2 ) ∗ s q r t ( 2 ) + ( 1 / 2 ∗ I ) ∗ s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) ∗ s q r t ( 2 ) + ( 1 / 2 ∗ I ) ∗ s q r t ( 2 ) ) 2 ∗ t a n h ( C 1 + ( ( 1 / 2 ) ∗ s q r t ( 2 ) + ( 1 / 2 ∗ I ) ∗ s q r t ( 2 ) ) ∗ x + C 3 ∗ t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = − ( 4 / 3 ) ∗ ( − ( 1 / 22 ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) − ( 1 / 22 ∗ I ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) ) 2 + 2 ∗ ( − ( 1 / 22 ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) − ( 1 / 22 ∗ I ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) ) 2 ∗ t a n h ( C 1 + ( − ( 1 / 44 ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) − ( 1 / 44 ∗ I ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) ) ∗ x + C 3 ∗ t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*(-(1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*(-(1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+(-(1/44)*sqrt(2)*11^{(}3/4)-(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = − ( 4 / 3 ) ∗ ( − ( 1 / 22 ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) + ( 1 / 22 ∗ I ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) ) 2 + 2 ∗ ( − ( 1 / 22 ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) + ( 1 / 22 ∗ I ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) ) 2 ∗ t a n h ( C 1 + ( − ( 1 / 44 ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) + ( 1 / 44 ∗ I ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) ) ∗ x + C 3 ∗ t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*(-(1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*(-(1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+(-(1/44)*sqrt(2)*11^{(}3/4)+(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = − ( 4 / 3 ) ∗ ( ( 1 / 22 ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) − ( 1 / 22 ∗ I ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) ) 2 + 2 ∗ ( ( 1 / 22 ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) − ( 1 / 22 ∗ I ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) ) 2 ∗ t a n h ( C 1 + ( ( 1 / 44 ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) − ( 1 / 44 ∗ I ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) ) ∗ x + C 3 ∗ t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*((1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*((1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+((1/44)*sqrt(2)*11^{(}3/4)-(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = − ( 4 / 3 ) ∗ ( ( 1 / 22 ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) + ( 1 / 22 ∗ I ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) ) 2 + 2 ∗ ( ( 1 / 22 ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) + ( 1 / 22 ∗ I ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) ) 2 ∗ t a n h ( C 1 + ( ( 1 / 44 ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) + ( 1 / 44 ∗ I ) ∗ s q r t ( 2 ) ∗ 11 ( 3 / 4 ) ) ∗ x + C 3 ∗ t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*((1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*((1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+((1/44)*sqrt(2)*11^{(}3/4)+(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}}
Kaup Kupershmidt eq tanh method animation2
Kaup Kupershmidt eq tanh method animation7
Kaup Kupershmidt eq tanh method animation8
g := u ( x , t ) = − ( 1 / 2 ) ∗ C 3 2 − ( 1 / 6 ) ∗ s q r t ( − 3 ∗ C 3 4 − 4 ) + ( ( 1 / 2 ) ∗ C 3 2 + ( 1 / 2 ) ∗ s q r t ( − 3 ∗ C 3 4 − 4 ) ) ∗ J a c o b i S N ( C 2 + C 3 ∗ x + C 4 ∗ t , ( 1 / 2 ) ∗ s q r t ( 2 ∗ C 3