库普-库珀施密特方程

✍ dations ◷ 2025-02-24 07:44:10 #偏微分方程,孤立子

库普-库珀施密特方程(Kaup-Kupershmidt Equation)是一个非线性偏微分方程:


4 u ( x , t ) x 4 + u ( x , t ) x + 45 ( u ( x , t ) x u ( x , t ) 2 ( 75 / 2 ) 2 u ( x , t ) x 2 u ( x , t ) x 15 u ( x , t ) 3 u ( x , t ) x 3 {\displaystyle {\frac {\partial ^{4}u(x,t)}{\partial x^{4}}}+{\frac {\partial u(x,t)}{\partial x}}+45({\frac {\partial u(x,t)}{\partial x}}*u(x,t)^{2}-(75/2)*{\frac {\partial ^{2}u(x,t)}{\partial x^{2}}}*{\frac {\partial u(x,t)}{\partial x}}-15*u(x,t)*{\frac {\partial ^{3}u(x,t)}{\partial x^{3}}}}

利用Maple软件包TWSolution,随所选定展开函数不同,可得多种行波解

g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*(-(1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*(-(1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+(-(1/44)*sqrt(2)*11^{(}3/4)-(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*(-(1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*(-(1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+(-(1/44)*sqrt(2)*11^{(}3/4)+(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*((1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*((1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+((1/44)*sqrt(2)*11^{(}3/4)-(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*((1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*((1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+((1/44)*sqrt(2)*11^{(}3/4)+(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}}

Kaup Kupershmidt eq tanh method animation2

Kaup Kupershmidt eq tanh method animation7

Kaup Kupershmidt eq tanh method animation8

g := u ( x , t ) = ( 1 / 2 ) C 3 2 ( 1 / 6 ) s q r t ( 3 C 3 4 4 ) + ( ( 1 / 2 ) C 3 2 + ( 1 / 2 ) s q r t ( 3 C 3 4 4 ) ) J a c o b i S N ( C 2 + C 3 x + C 4 t , ( 1 / 2 ) s q r t ( 2 C 3

相关

  • 肯尼思一世肯尼思·麦克亚尔宾(中世纪盖尔语:Cináed mac Ailpín;现代盖尔语:Coinneach mac Ailpein;现代皮克特人国王列表多称其为皮克特人的肯尼思三世;800年后-858年2月13日)是公元9世纪欧
  • 艾族官方登记 4,841 (1999)艾族(越南语:Người Ngái (
  • 加拿大元加拿大元(英语:Canadian dollar,法语:Dollar Canadien,ISO 4217货币码:CAD),又称加元或加币,是加拿大的法定货币,自1858年起使用,通常以$、C$、Can$或加元等简称。1加元相等于100加拿大
  • 巴提卡洛阿巴提卡洛阿(泰米尔语:மட்டக்களப்பு,转写:Maṭṭakkaḷappu;僧伽罗语:මඩකලපුව,转写:Madakalapuwa)是斯里兰卡的城市,由东部省的拜蒂克洛区负责管辖,每年平均降雨量1,
  • 伊奥西弗·伊格尔斯特罗姆奥托·海因里希·伊格尔斯特罗姆伯爵(瑞典语:Otto Henrik Igelström,俄语:Игельстрем, Иосиф Андреевич,英语:Otto Heinrich Igelström)(1737年5月7日 -
  • GemilangGemilang可以是指:
  • 偶像学校《偶像学校》(朝鲜语:아이돌학교,英语:Idol School)是韩国Mnet于2017年制作的综艺节目,以养成新女团偶像为主轴,招收13足岁以上少女接受为期11周的偶像特殊教育,成绩优秀的九名毕业
  • 储埙储埙,浙江钱塘县人,清朝军事将领,武探花及第。康熙十八年(1679年)己未科一甲第三名进士。康熙三十九年(1700年)任台湾镇标中营游击。秩满,调任甘肃抚标左营游击。
  • 廉大玉廉大玉(렴대옥,1999年2月2日-)是朝鲜民主主义人民共和国女子花样滑冰运动员。目前,她的拍挡是金柱植。廉大玉于2009年与吴昌歌首度参与全国锦标赛双人滑取得第5。在之后的两届赛
  • 理想状态理想状态是自然科学里表示理论上可以达到而实际上因为种种原因不能达到的状态。例如牛顿第一定律,它是一个理想状态,但是实际上因为摩擦,它无法真正做出来;又如分析热力学定律时