库普-库珀施密特方程

✍ dations ◷ 2025-04-02 10:43:15 #偏微分方程,孤立子

库普-库珀施密特方程(Kaup-Kupershmidt Equation)是一个非线性偏微分方程:


4 u ( x , t ) x 4 + u ( x , t ) x + 45 ( u ( x , t ) x u ( x , t ) 2 ( 75 / 2 ) 2 u ( x , t ) x 2 u ( x , t ) x 15 u ( x , t ) 3 u ( x , t ) x 3 {\displaystyle {\frac {\partial ^{4}u(x,t)}{\partial x^{4}}}+{\frac {\partial u(x,t)}{\partial x}}+45({\frac {\partial u(x,t)}{\partial x}}*u(x,t)^{2}-(75/2)*{\frac {\partial ^{2}u(x,t)}{\partial x^{2}}}*{\frac {\partial u(x,t)}{\partial x}}-15*u(x,t)*{\frac {\partial ^{3}u(x,t)}{\partial x^{3}}}}

利用Maple软件包TWSolution,随所选定展开函数不同,可得多种行波解

g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*(-(1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*(-(1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+(-(1/44)*sqrt(2)*11^{(}3/4)-(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*(-(1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*(-(1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+(-(1/44)*sqrt(2)*11^{(}3/4)+(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*((1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*((1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+((1/44)*sqrt(2)*11^{(}3/4)-(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*((1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*((1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+((1/44)*sqrt(2)*11^{(}3/4)+(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}}

Kaup Kupershmidt eq tanh method animation2

Kaup Kupershmidt eq tanh method animation7

Kaup Kupershmidt eq tanh method animation8

g := u ( x , t ) = ( 1 / 2 ) C 3 2 ( 1 / 6 ) s q r t ( 3 C 3 4 4 ) + ( ( 1 / 2 ) C 3 2 + ( 1 / 2 ) s q r t ( 3 C 3 4 4 ) ) J a c o b i S N ( C 2 + C 3 x + C 4 t , ( 1 / 2 ) s q r t ( 2 C 3

相关

  • 亚历山德罗·伏特电池 甲烷 伏特 电势物理学亚历山德罗·朱塞佩·安东尼奥·阿纳斯塔西奥·伏打(意大利语:Alessandro Giuseppe Antonio Anastasio Volta,1745年2月18日-1827年3月5日),意大利物理
  • 意向处理分析治疗意向分析法(英语:intention-to-treat analysis;缩写:ITT analysis)是指在分析实验结果时,以受试者最初被分配的治疗计划、而非最终所获的治疗为基础进行分析。使用这一分析法
  • 超方形在几何学中,超方形(英语:Hypercube),又称立方形、正测形(Measure Polytope)是指正方形和立方体的n维类比(对于正方形,n=2,对于立方体,n=3)。它是一类封闭的、紧致的、凸的图形,它们的1维
  • 艾米·怀恩豪斯艾米·杰德·怀恩豪斯(Amy Jade Winehouse,1983年9月14日-2011年7月23日)是一位英国歌手和及词曲作家,闻名于其低沉的嗓音和其女低音,她其女低音的表达与音乐风格包括揉合了灵魂乐
  • 鲜味剂鲜味剂,煮菜等调理食物时,所加入用以增加食物风味的调味品,其来源可能为人工合成或是以其他的食材精制而成。常见的鲜味剂除了味精、高汤块之外,还有蚝油、鸡粉、鱼露、虾酱、香
  • 妙高院熊姬(天正5年(1577年) - 寛永3年6月25日(1626年8月16日))亦称作妙高院。为日本安土桃山时代至江户时代前期的女性。父亲为松平信康,母亲为五徳姫,祖父为德川家康,外祖父为织田信长,丈
  • 赌彩黑名单《赌彩黑名单》(英语:)是一部1988年美国动作犯罪惊悚片,由巴迪·范宏恩(英语:Buddy Van Horn)执导,史帝夫·沙朗编剧。该片为1983年电影《拨云见日》的续集,以及“肮脏哈利系列电影(英
  • 三上小又三上小又(11月11日-),日本漫画家、插画家。男性。出身于石川县金泽市。代表作是《YUYU式》。笔名“三上小又”是其本名“淑”的分解所用的一个字符。在描绘方面,非常注重手的真实
  • 布拉肯峰坐标:77°51′S 85°24′W / 77.850°S 85.400°W / -77.850; -85.400布拉肯峰(英语:Bracken Peak)是南极洲的山峰,座标,位于埃尔斯沃思地,处于马隆山东南面5公里,海拔高度1,240米(4,
  • 伊凡卡·苏维拉伊凡卡·苏维拉(白俄罗斯语:Івонка Сурвіла,1936年4月11日-)白俄罗斯政治家、翻译家、画家,白俄罗斯人民共和国拉达主席。生于波兰第二共和国斯托尔布齐(西白俄罗斯),19