库普-库珀施密特方程

✍ dations ◷ 2025-07-06 09:42:18 #偏微分方程,孤立子

库普-库珀施密特方程(Kaup-Kupershmidt Equation)是一个非线性偏微分方程:


4 u ( x , t ) x 4 + u ( x , t ) x + 45 ( u ( x , t ) x u ( x , t ) 2 ( 75 / 2 ) 2 u ( x , t ) x 2 u ( x , t ) x 15 u ( x , t ) 3 u ( x , t ) x 3 {\displaystyle {\frac {\partial ^{4}u(x,t)}{\partial x^{4}}}+{\frac {\partial u(x,t)}{\partial x}}+45({\frac {\partial u(x,t)}{\partial x}}*u(x,t)^{2}-(75/2)*{\frac {\partial ^{2}u(x,t)}{\partial x^{2}}}*{\frac {\partial u(x,t)}{\partial x}}-15*u(x,t)*{\frac {\partial ^{3}u(x,t)}{\partial x^{3}}}}

利用Maple软件包TWSolution,随所选定展开函数不同,可得多种行波解

g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*(-(1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*(-(1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+(-(1/44)*sqrt(2)*11^{(}3/4)-(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*(-(1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*(-(1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+(-(1/44)*sqrt(2)*11^{(}3/4)+(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*((1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*((1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+((1/44)*sqrt(2)*11^{(}3/4)-(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*((1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*((1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+((1/44)*sqrt(2)*11^{(}3/4)+(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}}

Kaup Kupershmidt eq tanh method animation2

Kaup Kupershmidt eq tanh method animation7

Kaup Kupershmidt eq tanh method animation8

g := u ( x , t ) = ( 1 / 2 ) C 3 2 ( 1 / 6 ) s q r t ( 3 C 3 4 4 ) + ( ( 1 / 2 ) C 3 2 + ( 1 / 2 ) s q r t ( 3 C 3 4 4 ) ) J a c o b i S N ( C 2 + C 3 x + C 4 t , ( 1 / 2 ) s q r t ( 2 C 3

相关

  • 克拉通克拉通(来自希腊语kratos,意为“强度”),或称稳定地块、大陆核心、古陆、古陆核、刚块、安定地块,是指大陆地壳上的古老而稳定的部分,于最近至少5亿年内的大陆和超大陆的会聚和分
  • 意大利菜古罗马 · 中世纪 · 文艺复兴 · 现代威尼斯和威尼托 · 托斯卡尼 · 西西里 · 维琴察 · 罗马 (罗马饮品) · 那不勒斯面包 · 干酪 (PDO) · 油酥糕点 ·
  • 太平洋垃圾带太平洋垃圾带,又亦作称太平洋垃圾岛,是东太平洋上从美国的加州到夏威夷州的一个巨型垃圾积聚范围。在太平洋,北太平洋环流系统是相对静止的区域,此区主要为副热带高压带,水流旋转
  • 沟渠沟渠是一种小型至中等的用来导水的洼地。沟渠可用于排水——从低洼地或沿公路、田野排水,或者将水从较远的地方引来灌溉作物。而壕沟是指狭长的沟渠。水沟常常能在耕地周围看
  • 马来西亚伊斯兰法庭回教法庭是指执行伊斯兰教法的法庭,对马来西亚的每个穆斯林都有管辖权。回教法庭制度是马来西亚法律制度中存在的两个独立的法院制度之一。在家庭法和宗教仪式事宜上只对穆斯
  • 爱德华·克伦宁爱德华·克伦宁(Edward Cronin,1801年-1882年2月1日),普利茅斯弟兄会的创始人之一,早期西方基督新教去中东的传教士和医生,顺势疗法的先驱。1801年,爱德华·克伦宁出生在爱尔兰的科
  • 里查达斯·贝兰基斯 里查达斯·贝兰基斯(立陶宛语:Ričardas Berankis,1990年6月21日-),是立陶宛职业网球运动员。截至目前最高的ATP单打排名为50,也是立陶宛的男网选手中世界排名最高者。
  • 独焰草属布氏独焰草(学名:),是古巴特有的一种草本植物,也是独焰草属(学名:)的单型种。其模式标本采集于古巴圣克里斯托瓦尔,并于1871年被美国植物学家查尔斯·赖特(英语:Charles Wright (botani
  • 狄云狄云,金庸武侠小说《连城诀》中的男主人公,性格单纯直率,因他单纯的性格,师妹戚芳称他作“空心菜”。在经历了诸多事件后,变得稳重、心思缜密。为金庸小说中武功绝顶的高手之一。
  • 刘璟 (长史)刘璟(1350年-1402年),字仲璟,又字孟光,号易斋,浙江青田(今文成县)人,祖籍陕西保安(志丹),明朝开国元勋刘基(刘伯温)的次子,明朝政治人物。刘璟在弱冠之年就通晓经学。明太祖想念刘基,就招其入