库普-库珀施密特方程

✍ dations ◷ 2025-01-04 19:04:20 #偏微分方程,孤立子

库普-库珀施密特方程(Kaup-Kupershmidt Equation)是一个非线性偏微分方程:


4 u ( x , t ) x 4 + u ( x , t ) x + 45 ( u ( x , t ) x u ( x , t ) 2 ( 75 / 2 ) 2 u ( x , t ) x 2 u ( x , t ) x 15 u ( x , t ) 3 u ( x , t ) x 3 {\displaystyle {\frac {\partial ^{4}u(x,t)}{\partial x^{4}}}+{\frac {\partial u(x,t)}{\partial x}}+45({\frac {\partial u(x,t)}{\partial x}}*u(x,t)^{2}-(75/2)*{\frac {\partial ^{2}u(x,t)}{\partial x^{2}}}*{\frac {\partial u(x,t)}{\partial x}}-15*u(x,t)*{\frac {\partial ^{3}u(x,t)}{\partial x^{3}}}}

利用Maple软件包TWSolution,随所选定展开函数不同,可得多种行波解

g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+(-(1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+(-(1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+((1/2)*sqrt(2)-(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 2 / 3 ) ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) 2 t a n h ( C 1 + ( ( 1 / 2 ) s q r t ( 2 ) + ( 1 / 2 I ) s q r t ( 2 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(2/3)*((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))^{2}*tanh(_{C}1+((1/2)*sqrt(2)+(1/2*I)*sqrt(2))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*(-(1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*(-(1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+(-(1/44)*sqrt(2)*11^{(}3/4)-(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*(-(1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*(-(1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+(-(1/44)*sqrt(2)*11^{(}3/4)+(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*((1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*((1/22)*sqrt(2)*11^{(}3/4)-(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+((1/44)*sqrt(2)*11^{(}3/4)-(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}} g := u ( x , t ) = ( 4 / 3 ) ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 + 2 ( ( 1 / 22 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 22 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) 2 t a n h ( C 1 + ( ( 1 / 44 ) s q r t ( 2 ) 11 ( 3 / 4 ) + ( 1 / 44 I ) s q r t ( 2 ) 11 ( 3 / 4 ) ) x + C 3 t ) 2 {\displaystyle g:={u(x,t)=-(4/3)*((1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}+2*((1/22)*sqrt(2)*11^{(}3/4)+(1/22*I)*sqrt(2)*11^{(}3/4))^{2}*tanh(_{C}1+((1/44)*sqrt(2)*11^{(}3/4)+(1/44*I)*sqrt(2)*11^{(}3/4))*x+_{C}3*t)^{2}}}

Kaup Kupershmidt eq tanh method animation2

Kaup Kupershmidt eq tanh method animation7

Kaup Kupershmidt eq tanh method animation8

g := u ( x , t ) = ( 1 / 2 ) C 3 2 ( 1 / 6 ) s q r t ( 3 C 3 4 4 ) + ( ( 1 / 2 ) C 3 2 + ( 1 / 2 ) s q r t ( 3 C 3 4 4 ) ) J a c o b i S N ( C 2 + C 3 x + C 4 t , ( 1 / 2 ) s q r t ( 2 C 3

相关

  • 亚克兴战役亚克兴战役(Battle of Actium)是罗马共和国的马克·安东尼与古埃及托勒密王朝法老克利奥帕特拉七世联军与屋大维之间一场决定性战役。此战发生于公元前31年9月2日,地点为希腊阿
  • 墨西哥割让地墨西哥割让地(英语:Mexican Cession)是一个历史名词,指的是美墨战争中战败方墨西哥于1848年瓜达卢佩-伊达尔戈条约中割让给美国的土地,现今为美国西南方的州。这区域不包含原先独
  • 哥伦比亚级哥伦比亚级潜艇(英语:Columbia-class submarine),又称俄亥俄级替换者潜艇(英语:Ohio Replacement Submarine),是美国海军开发中的核潜艇,用于取代俄亥俄级下一代核潜艇。预计2021年开
  • 学问知识是对某个主题确信的认识,并且这些认识拥有潜在的能力为特定目的而使用。意指透过经验或联想,而能够熟悉进而了解某件事情;这种事实或状态就称为知识,其包括认识或了解某种科
  • 谢尔盖·别利亚夫斯基谢尔盖·伊万诺维奇·别利亚夫斯基(俄语:Сергей Иванович Белявский,1883年12月7日圣彼得堡 - 1953年10月13日圣彼得堡),俄罗斯-苏联天文学家,苏联科学院
  • Belle实验贝尔实验(Belle experiment)为世界上两大B介子工厂之一,是一个国际合作的实验计划,使用日本高能加速器研究机构的KEKB加速器来进行CP对称性破坏的研究。贝尔实验的名称Belle由来
  • 楔形烷楔形烷(C8H8,IUPAC名为五环辛烷),是一种饱和的环烷烃。它的英文名(Cuneane)是由拉丁文“cuneus”衍生出来的,意思是“楔子”。楔形烷是立方烷的价键异构体。楔形烷的衍生物中,某些还
  • 钦察汗国 (消歧义)钦察汗国是蒙古四大汗国之一。钦察汗国还可以指:
  • 学校的阶梯《学校的阶梯》(日语:学校の階段)是小说家櫂末高彰跟插画家甘福あまね于法米通文库的轻小说系列,全十集完结另加一本番外篇。台湾中文版由台湾角川发行。曾获得第七届Enterbrain
  • 夏目真悟夏目真悟,日本男性动画师。出身于青森县。进入动画业界之前的职业是游戏开发者。全面投入之后以自由动画师的身份主要以J.C.STAFF、GONZO、SHIN-EI动画作品活动。