拉比周期

✍ dations ◷ 2025-05-19 19:03:24 #原子物理学,量子光学

在物理学中,拉比周期是在振荡外场中的二能级量子体系的周期性行为。一个二能级系统具有两个可能的状态,如果状态不是简并的,当吸收一份能量以后,体系可以被激发。

这种效应在量子光学、核磁共振和量子计算中非常重要,它是以伊西多·伊萨克·拉比(Isidor Isaac Rabi)的名字命名的。

当一个原子(或者其它二能级体系)被一束相干光照射的时候,它将周期性地吸收光子并通过受激发射重新将光子发射出来,这样一个周期称为拉比周期,它的倒数称为拉比频率(英语:Rabi frequency)。

这种机制是量子光学的基础,其模型的建立可以依据杰恩斯-卡明斯模型和布洛赫矢量形式。

例如,对于频率受外部电磁场调制到激发态的二能级原子(该原子的电子可以处于激发态或者基态),利用布洛赫方程可以得到,原子处于激发态的机率为 | c b ( t ) | 2 = cos ( ω t ) 2 {\displaystyle |c_{b}(t)|^{2}=\cos(\omega t)^{2}\,} ,其中 ω {\displaystyle \omega \,} 为拉比频率(英语:Rabi frequency)。

更一般地,可以考虑一个没有本征态的二能级体系,如果这个体系初态位于其中一个能级,时间演化将导致每个能级的态密度按照某个特征频率振荡,其角频率也称为拉比频率(英语:Rabi frequency)。

拉比效应的数学细节请参见拉比问题(英语:Rabi_problem)。 例如,若将电磁场频率调至激发能,并于电磁场当中置入一个双态原子(该原子之电子可以处于激发态或基态),那么处于激发态原子之概率可以从Bloch方程得出:

| c b ( t ) | 2 sin 2 ( ω t / 2 ) {\displaystyle |c_{b}(t)|^{2}\propto \sin ^{2}(\omega t/2)}

ω {\displaystyle \omega } 是拉比频率。

更一般而言,我们可以考虑一种,两个能级都不是能量本征态的系统 。因此,如果在其中一个能级对系统初始化,则时间演化将使每个能级的总粒子数以某个特征频率振荡,其角频率也称为拉比频率。 该双态量子系统的状态可以表示为二维复希尔伯特空间矢量 ,这意味着每个状态矢量 | ψ {\displaystyle \vert \psi \rangle } 是以标准的复数坐标表示。

| ψ = ( c 1 c 2 ) = c 1 ( 1 0 ) + c 2 ( 0 1 ) ; {\displaystyle |\psi \rangle ={\begin{pmatrix}c_{1}\\c_{2}\end{pmatrix}}=c_{1}{\begin{pmatrix}1\\0\end{pmatrix}}+c_{2}{\begin{pmatrix}0\\1\end{pmatrix}};} c 1 {\displaystyle c_{1}} c 2 {\displaystyle c_{2}} 是坐标。

如果矢量归一化, c 1 {\displaystyle c_{1}} c 2 {\displaystyle c_{2}} 的关联为 | c 1 | 2 + | c 2 | 2 = 1 {\displaystyle {|c_{1}|}^{2}+{|c_{2}|}^{2}=1} 。 基矢量表示为 | 0 = ( 1 0 ) {\displaystyle |0\rangle ={\begin{pmatrix}1\\0\end{pmatrix}}} | 1 = ( 0 1 ) {\displaystyle |1\rangle ={\begin{pmatrix}0\\1\end{pmatrix}}}

所有与该系统相关的可观测物理量均为2 × {\displaystyle \times } 2埃尔米特矩阵 ,这表示系统的哈密顿量也是相似矩阵。

可以通过以下步骤构建振荡实验:

如果 | 1 {\displaystyle |1\rangle } 是H的本征态且P(t)=1 ,那么就不会产生振荡。此外,如果两个态 | 0 {\displaystyle |0\rangle } | 1 {\displaystyle |1\rangle } 皆为简并态,那么包括 | 1 {\displaystyle |1\rangle } 在内的所有态皆为H的本征态。因此也不会产生振荡。

另一方面,若H无简并本征态,且初态不是本征态,则振荡将会产生。 双态系统哈密顿量的最一般形式给定如下

H = ( a 0 + a 3 a 1 i a 2 a 1 + i a 2 a 0 a 3 ) {\displaystyle \mathbf {H} ={\begin{pmatrix}a_{0}+a_{3}&a_{1}-ia_{2}\\a_{1}+ia_{2}&a_{0}-a_{3}\end{pmatrix}}}

a 0 , a 1 , a 2 {\displaystyle a_{0},a_{1},a_{2}} a 3 {\displaystyle a_{3}} 是实数。 这个矩阵可以分解为

H = a 0 σ 0 + a 1 σ 1 + a 2 σ 2 + a 3 σ 3 ; {\displaystyle \mathbf {H} =a_{0}\cdot \sigma _{0}+a_{1}\cdot \sigma _{1}+a_{2}\cdot \sigma _{2}+a_{3}\cdot \sigma _{3};}

σ 0 {\displaystyle \sigma _{0}} 是2 × {\displaystyle \times } 2单位矩阵, σ k ( k = 1 , 2 , 3 ) {\displaystyle \sigma _{k}\;(k=1,2,3)} 是泡利矩阵 。 尤其是在与时间无关的情况下,这种分解能够简化系统分析,其中 a 0 , a 1 , a 2 {\displaystyle a_{0},a_{1},a_{2}} a 3 {\displaystyle a_{3}} 是常数。考虑置于磁场 B = B z ^ {\displaystyle \mathbf {B} =B\mathbf {\hat {z}} } 之中的自旋1/2粒子。该系统的相互作用能量算符为

H = μ B = γ S B = γ   B   S z {\displaystyle \mathbf {H} =-{\boldsymbol {\mu }}\cdot \mathbf {B} =-\gamma \mathbf {S} \cdot \mathbf {B} =-\gamma \ B\ S_{z}} S z = 2 σ 3 = 2 ( 1 0 0 1 ) {\displaystyle S_{z}={\frac {\hbar }{2}}\,\sigma _{3}={\frac {\hbar }{2}}{\begin{pmatrix}1&0\\0&-1\end{pmatrix}}}

μ {\displaystyle \mu } 是粒子磁矩的大小, γ {\displaystyle \gamma } 是旋磁比 , σ {\displaystyle {\boldsymbol {\sigma }}} 是泡利矩阵之矢量。此处哈密顿量之本征态是 σ 3 {\displaystyle \sigma _{3}} ,而 | 1 {\displaystyle |1\rangle } | 2 {\displaystyle |2\rangle } 具有对应的本征值 E + = 2 γ B   E = 2 γ B {\displaystyle E_{+}={\frac {\hbar }{2}}\gamma B\,\ E_{-}=-{\frac {\hbar }{2}}\gamma B} 。 在任意状态 | ϕ {\displaystyle |\phi \rangle } 下,我们可以给出系统处于状态 | ψ {\displaystyle |\psi \rangle } 之概率 | ϕ | ψ | 2 {\displaystyle {|\langle \phi |\psi \rangle |}^{2}} 。在 t = 0 {\displaystyle t=0} 的时刻,让系统处于准备状态 | + X {\displaystyle \left|+X\right\rangle } 。 注意到 | + X {\displaystyle \left|+X\right\rangle } σ 1 {\displaystyle \sigma _{1}} 的本征态 :

| ψ ( 0 ) = 1 2 ( 1 1 ) = 1 2 ( 1 0 ) + 1 2 ( 0 1 ) {\displaystyle |\psi (0)\rangle ={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1\\1\end{pmatrix}}={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1\\0\end{pmatrix}}+{\frac {1}{\sqrt {2}}}{\begin{pmatrix}0\\1\end{pmatrix}}}

此处的哈密顿量与时间无关。 因此,通过求解平稳的薛定谔方程,在经过时间t之后,状态演变为 | ψ ( t ) = exp | ψ ( 0 ) = ( exp 0 0 exp ) | ψ ( 0 ) {\displaystyle \left|\psi (t)\right\rangle =\exp \left\left|\psi (0)\right\rangle ={\begin{pmatrix}\exp \left&0\\0&\exp \left\end{pmatrix}}|\psi (0)\rangle } ,带有系统总能量 E {\displaystyle E} 。因此经过时间t之后,状态成为:

| ψ ( t ) = e i E + t 1 2 | 0 + e i E t 1 2 | 1 {\displaystyle |\psi (t)\rangle =e^{\frac {-iE_{+}t}{\hbar }}{\frac {1}{\sqrt {2}}}|0\rangle +e^{\frac {-iE_{-}t}{\hbar }}{\frac {1}{\sqrt {2}}}|1\rangle }

现在假设在t时刻,对x方向上的自旋进行测量。 下式给出测量到自旋向上的概率:

| + X | ψ ( t ) | 2 = | 0 | + 1 | 2 ( 1 2 exp | 0 + 1 2 exp | 1 ) | 2 = cos 2 ( ω t 2 ) , {\displaystyle {\left|\langle +X|\psi (t)\rangle \right|}^{2}={\left|{\frac {\left\langle 0\right|+\left\langle 1\right|}{\sqrt {2}}}\left({{\frac {1}{\sqrt {2}}}\exp \left\left|0\right\rangle +{\frac {1}{\sqrt {2}}}\exp \left\left|1\right\rangle }\right)\right|}^{2}=\cos ^{2}\left({\frac {\omega t}{2}}\right),}

ω {\displaystyle \omega } 是特征角频率,假设 E E

相关

  • 甲亢性周期性麻痹1甲状腺毒性周期性麻痹症(英语:Thyrotoxic periodic paralysis,简称TPP)是一种因甲状腺机能亢进引起的病况,特征是病发时会有肌肉无力(英语:Muscle weakness)的症状。症状发作时一般
  • 炭疽炭疽病(英语:anthrax)是由炭疽杆菌感染造成的疾病,感染途径包括皮肤接触、呼吸道、消化道以及注射等四种,通常在感染一天至两个月后开始出现症状,经由皮肤接触的感染起初会出现小
  • 乳牙乳牙,又称奶牙,是人类和很多动物的第一套牙齿。脱落后再生的牙齿称为恒齿。人类的乳牙有20颗,比恒齿小,表面珐琅质薄。按生长顺序为:婴儿一般6个月左右开始长乳牙,约2岁半完成过程
  • 闽菜闽菜是中国八大菜系之一,根据地域分为福州菜(以福建福州闽侯县为中心)、闽西菜、泉州菜、厦门菜、漳州菜几种类型,后3种合称闽南菜。福建地处东南沿海、盛产多种海鲜,使闽人长于
  • 世界童子军大会世界童军大露营(法语:Jamboree Scout Mondial)为国际间童军大露营的一种,通常有数千甚至数以万计来自世界各地十四至十七岁之青年参与。第1次世界童军大露营由伦敦英国童军总会
  • 保罗·布雷默刘易斯·保罗·布雷默三世(简称“保罗·布雷默”,英文:Lewis Paul Bremer III,1941年9月30日-)是一位美国外交官,曾于2003年美国占领伊拉克后接替杰伊·加纳担任联盟驻伊拉克临时管
  • 1902年汪清地震1902年汪清地震是指1902年7月3日发生于延边汪清地区的强烈地震。是次地震的地震规模为Ms 6.6至6.7级,震源深度约20千米,最大烈度为8(VII)度。本次地震是中国东北地区已知最早给
  • 翁史烈翁史烈(1932年5月21日-),热机专家,原上海交通大学校长,中国工程院院士(1995年当选)1932年出生于浙江省宁波。1952年毕业于交通大学造船系。1962年毕业于苏联列宁格勒造船学院,获副博
  • 海蚬蝶族海蚬蝶族(学名:)是蚬蝶科蚬蝶亚科里的一个族,包含了2个属。物种分布于新热带界。成虫爱站在叶底休息。前翅拥有五条胫脉。箩纹蚬蝶属 海蚬蝶属
  • 李克用李克用(856年10月24日-908年2月24日),字翼圣,神武川之新城(今山西雁门)人,后唐庄宗李存勗之父,本姓朱邪(又作朱耶),其父受唐朝天子赐李姓。绰号鸦儿、三郎、独眼龙、飞虎子,沙陀族人,唐大