拉比周期

✍ dations ◷ 2025-08-05 19:42:36 #原子物理学,量子光学

在物理学中,拉比周期是在振荡外场中的二能级量子体系的周期性行为。一个二能级系统具有两个可能的状态,如果状态不是简并的,当吸收一份能量以后,体系可以被激发。

这种效应在量子光学、核磁共振和量子计算中非常重要,它是以伊西多·伊萨克·拉比(Isidor Isaac Rabi)的名字命名的。

当一个原子(或者其它二能级体系)被一束相干光照射的时候,它将周期性地吸收光子并通过受激发射重新将光子发射出来,这样一个周期称为拉比周期,它的倒数称为拉比频率(英语:Rabi frequency)。

这种机制是量子光学的基础,其模型的建立可以依据杰恩斯-卡明斯模型和布洛赫矢量形式。

例如,对于频率受外部电磁场调制到激发态的二能级原子(该原子的电子可以处于激发态或者基态),利用布洛赫方程可以得到,原子处于激发态的机率为 | c b ( t ) | 2 = cos ( ω t ) 2 {\displaystyle |c_{b}(t)|^{2}=\cos(\omega t)^{2}\,} ,其中 ω {\displaystyle \omega \,} 为拉比频率(英语:Rabi frequency)。

更一般地,可以考虑一个没有本征态的二能级体系,如果这个体系初态位于其中一个能级,时间演化将导致每个能级的态密度按照某个特征频率振荡,其角频率也称为拉比频率(英语:Rabi frequency)。

拉比效应的数学细节请参见拉比问题(英语:Rabi_problem)。 例如,若将电磁场频率调至激发能,并于电磁场当中置入一个双态原子(该原子之电子可以处于激发态或基态),那么处于激发态原子之概率可以从Bloch方程得出:

| c b ( t ) | 2 sin 2 ( ω t / 2 ) {\displaystyle |c_{b}(t)|^{2}\propto \sin ^{2}(\omega t/2)}

ω {\displaystyle \omega } 是拉比频率。

更一般而言,我们可以考虑一种,两个能级都不是能量本征态的系统 。因此,如果在其中一个能级对系统初始化,则时间演化将使每个能级的总粒子数以某个特征频率振荡,其角频率也称为拉比频率。 该双态量子系统的状态可以表示为二维复希尔伯特空间矢量 ,这意味着每个状态矢量 | ψ {\displaystyle \vert \psi \rangle } 是以标准的复数坐标表示。

| ψ = ( c 1 c 2 ) = c 1 ( 1 0 ) + c 2 ( 0 1 ) ; {\displaystyle |\psi \rangle ={\begin{pmatrix}c_{1}\\c_{2}\end{pmatrix}}=c_{1}{\begin{pmatrix}1\\0\end{pmatrix}}+c_{2}{\begin{pmatrix}0\\1\end{pmatrix}};} c 1 {\displaystyle c_{1}} c 2 {\displaystyle c_{2}} 是坐标。

如果矢量归一化, c 1 {\displaystyle c_{1}} c 2 {\displaystyle c_{2}} 的关联为 | c 1 | 2 + | c 2 | 2 = 1 {\displaystyle {|c_{1}|}^{2}+{|c_{2}|}^{2}=1} 。 基矢量表示为 | 0 = ( 1 0 ) {\displaystyle |0\rangle ={\begin{pmatrix}1\\0\end{pmatrix}}} | 1 = ( 0 1 ) {\displaystyle |1\rangle ={\begin{pmatrix}0\\1\end{pmatrix}}}

所有与该系统相关的可观测物理量均为2 × {\displaystyle \times } 2埃尔米特矩阵 ,这表示系统的哈密顿量也是相似矩阵。

可以通过以下步骤构建振荡实验:

如果 | 1 {\displaystyle |1\rangle } 是H的本征态且P(t)=1 ,那么就不会产生振荡。此外,如果两个态 | 0 {\displaystyle |0\rangle } | 1 {\displaystyle |1\rangle } 皆为简并态,那么包括 | 1 {\displaystyle |1\rangle } 在内的所有态皆为H的本征态。因此也不会产生振荡。

另一方面,若H无简并本征态,且初态不是本征态,则振荡将会产生。 双态系统哈密顿量的最一般形式给定如下

H = ( a 0 + a 3 a 1 i a 2 a 1 + i a 2 a 0 a 3 ) {\displaystyle \mathbf {H} ={\begin{pmatrix}a_{0}+a_{3}&a_{1}-ia_{2}\\a_{1}+ia_{2}&a_{0}-a_{3}\end{pmatrix}}}

a 0 , a 1 , a 2 {\displaystyle a_{0},a_{1},a_{2}} a 3 {\displaystyle a_{3}} 是实数。 这个矩阵可以分解为

H = a 0 σ 0 + a 1 σ 1 + a 2 σ 2 + a 3 σ 3 ; {\displaystyle \mathbf {H} =a_{0}\cdot \sigma _{0}+a_{1}\cdot \sigma _{1}+a_{2}\cdot \sigma _{2}+a_{3}\cdot \sigma _{3};}

σ 0 {\displaystyle \sigma _{0}} 是2 × {\displaystyle \times } 2单位矩阵, σ k ( k = 1 , 2 , 3 ) {\displaystyle \sigma _{k}\;(k=1,2,3)} 是泡利矩阵 。 尤其是在与时间无关的情况下,这种分解能够简化系统分析,其中 a 0 , a 1 , a 2 {\displaystyle a_{0},a_{1},a_{2}} a 3 {\displaystyle a_{3}} 是常数。考虑置于磁场 B = B z ^ {\displaystyle \mathbf {B} =B\mathbf {\hat {z}} } 之中的自旋1/2粒子。该系统的相互作用能量算符为

H = μ B = γ S B = γ   B   S z {\displaystyle \mathbf {H} =-{\boldsymbol {\mu }}\cdot \mathbf {B} =-\gamma \mathbf {S} \cdot \mathbf {B} =-\gamma \ B\ S_{z}} S z = 2 σ 3 = 2 ( 1 0 0 1 ) {\displaystyle S_{z}={\frac {\hbar }{2}}\,\sigma _{3}={\frac {\hbar }{2}}{\begin{pmatrix}1&0\\0&-1\end{pmatrix}}}

μ {\displaystyle \mu } 是粒子磁矩的大小, γ {\displaystyle \gamma } 是旋磁比 , σ {\displaystyle {\boldsymbol {\sigma }}} 是泡利矩阵之矢量。此处哈密顿量之本征态是 σ 3 {\displaystyle \sigma _{3}} ,而 | 1 {\displaystyle |1\rangle } | 2 {\displaystyle |2\rangle } 具有对应的本征值 E + = 2 γ B   E = 2 γ B {\displaystyle E_{+}={\frac {\hbar }{2}}\gamma B\,\ E_{-}=-{\frac {\hbar }{2}}\gamma B} 。 在任意状态 | ϕ {\displaystyle |\phi \rangle } 下,我们可以给出系统处于状态 | ψ {\displaystyle |\psi \rangle } 之概率 | ϕ | ψ | 2 {\displaystyle {|\langle \phi |\psi \rangle |}^{2}} 。在 t = 0 {\displaystyle t=0} 的时刻,让系统处于准备状态 | + X {\displaystyle \left|+X\right\rangle } 。 注意到 | + X {\displaystyle \left|+X\right\rangle } σ 1 {\displaystyle \sigma _{1}} 的本征态 :

| ψ ( 0 ) = 1 2 ( 1 1 ) = 1 2 ( 1 0 ) + 1 2 ( 0 1 ) {\displaystyle |\psi (0)\rangle ={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1\\1\end{pmatrix}}={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1\\0\end{pmatrix}}+{\frac {1}{\sqrt {2}}}{\begin{pmatrix}0\\1\end{pmatrix}}}

此处的哈密顿量与时间无关。 因此,通过求解平稳的薛定谔方程,在经过时间t之后,状态演变为 | ψ ( t ) = exp | ψ ( 0 ) = ( exp 0 0 exp ) | ψ ( 0 ) {\displaystyle \left|\psi (t)\right\rangle =\exp \left\left|\psi (0)\right\rangle ={\begin{pmatrix}\exp \left&0\\0&\exp \left\end{pmatrix}}|\psi (0)\rangle } ,带有系统总能量 E {\displaystyle E} 。因此经过时间t之后,状态成为:

| ψ ( t ) = e i E + t 1 2 | 0 + e i E t 1 2 | 1 {\displaystyle |\psi (t)\rangle =e^{\frac {-iE_{+}t}{\hbar }}{\frac {1}{\sqrt {2}}}|0\rangle +e^{\frac {-iE_{-}t}{\hbar }}{\frac {1}{\sqrt {2}}}|1\rangle }

现在假设在t时刻,对x方向上的自旋进行测量。 下式给出测量到自旋向上的概率:

| + X | ψ ( t ) | 2 = | 0 | + 1 | 2 ( 1 2 exp | 0 + 1 2 exp | 1 ) | 2 = cos 2 ( ω t 2 ) , {\displaystyle {\left|\langle +X|\psi (t)\rangle \right|}^{2}={\left|{\frac {\left\langle 0\right|+\left\langle 1\right|}{\sqrt {2}}}\left({{\frac {1}{\sqrt {2}}}\exp \left\left|0\right\rangle +{\frac {1}{\sqrt {2}}}\exp \left\left|1\right\rangle }\right)\right|}^{2}=\cos ^{2}\left({\frac {\omega t}{2}}\right),}

ω {\displaystyle \omega } 是特征角频率,假设 E E

相关

  • .mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
  • 谢心澄谢心澄(1959年2月-),生于江苏南京,籍贯江苏常州,凝聚态物理学家。1982年毕业于中国科学技术大学近代物理系,1988年取得马里兰大学博士学位。2011年担任北京大学物理学院院长、讲席
  • 帕里斯帕里斯(古希腊语:Πάρις),原名亚历山大(Ἀλέξανδρος),为荷马史诗《伊利亚特》中的特洛伊王子。在所有现中,最著名的可能是与斯巴达女王海伦的私奔,这是特洛伊战争的直
  • 地球自转的效应科里奥利力(英语:Coriolis Force;简称科氏力)是一种惯性力,是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。此现象由法国著名数学家兼
  • 硅化铜硅化铜(Cu5Si)又名硅化五铜,是一种铜的二元硅化合物,为一种金属互化物,这意味着它的性质介于离子化合物和合金之间。可以通过加热铜与硅的混合物得到。立方晶体,其中 = 0.6224 nm
  • 博氏沙百灵博氏沙百灵(学名:),是百灵科沙百灵属的一种,为南非的特有种。全球活动范围约为42,900平方千米。该物种的保护状况被评为濒危。博氏沙百灵的平均体重约为19.2克。栖息地包括亚热带
  • 无线电接入技术无线电接入技术(Radio Access Technology,简称:RAT)是无线通信网络的底层物理连接方法。截至2013年,很多新型的手机,例如Nexus 4或iPhone 5都能够在一台设备上支持多个RAT,例如蓝牙
  • 台北市中正社区大学台北市中正社区大学,简称中正社大,是一所坐落于台湾台北市中正区的社区大学,创于2003年,为台北市社区大学教育的先驱之一。校址设于台北市私立开南高级商工职业学校。1980年代,台
  • 隆纳·格里利隆纳·格里利(Ronald Greeley,1939年8月25日-2011年10月27日)是一位亚利桑那州立大学地球与太空探测学院的荣誉退休教授,也是 NASA和亚利桑那州立大学合办的区域行星影像中心(英语
  • 陈哲陈哲(1435年-1511年),字继昭,浙江绍兴府山阴县人,民籍。明朝政治人物。进士出身。成化八年(1472年)登壬辰科进士,历官湖广衡州府知府。曾祖陈文立。祖父陈子谦。父陈玙。