拉比周期

✍ dations ◷ 2024-12-23 04:27:48 #原子物理学,量子光学

在物理学中,拉比周期是在振荡外场中的二能级量子体系的周期性行为。一个二能级系统具有两个可能的状态,如果状态不是简并的,当吸收一份能量以后,体系可以被激发。

这种效应在量子光学、核磁共振和量子计算中非常重要,它是以伊西多·伊萨克·拉比(Isidor Isaac Rabi)的名字命名的。

当一个原子(或者其它二能级体系)被一束相干光照射的时候,它将周期性地吸收光子并通过受激发射重新将光子发射出来,这样一个周期称为拉比周期,它的倒数称为拉比频率(英语:Rabi frequency)。

这种机制是量子光学的基础,其模型的建立可以依据杰恩斯-卡明斯模型和布洛赫矢量形式。

例如,对于频率受外部电磁场调制到激发态的二能级原子(该原子的电子可以处于激发态或者基态),利用布洛赫方程可以得到,原子处于激发态的机率为 | c b ( t ) | 2 = cos ( ω t ) 2 {\displaystyle |c_{b}(t)|^{2}=\cos(\omega t)^{2}\,} ,其中 ω {\displaystyle \omega \,} 为拉比频率(英语:Rabi frequency)。

更一般地,可以考虑一个没有本征态的二能级体系,如果这个体系初态位于其中一个能级,时间演化将导致每个能级的态密度按照某个特征频率振荡,其角频率也称为拉比频率(英语:Rabi frequency)。

拉比效应的数学细节请参见拉比问题(英语:Rabi_problem)。 例如,若将电磁场频率调至激发能,并于电磁场当中置入一个双态原子(该原子之电子可以处于激发态或基态),那么处于激发态原子之概率可以从Bloch方程得出:

| c b ( t ) | 2 sin 2 ( ω t / 2 ) {\displaystyle |c_{b}(t)|^{2}\propto \sin ^{2}(\omega t/2)}

ω {\displaystyle \omega } 是拉比频率。

更一般而言,我们可以考虑一种,两个能级都不是能量本征态的系统 。因此,如果在其中一个能级对系统初始化,则时间演化将使每个能级的总粒子数以某个特征频率振荡,其角频率也称为拉比频率。 该双态量子系统的状态可以表示为二维复希尔伯特空间矢量 ,这意味着每个状态矢量 | ψ {\displaystyle \vert \psi \rangle } 是以标准的复数坐标表示。

| ψ = ( c 1 c 2 ) = c 1 ( 1 0 ) + c 2 ( 0 1 ) ; {\displaystyle |\psi \rangle ={\begin{pmatrix}c_{1}\\c_{2}\end{pmatrix}}=c_{1}{\begin{pmatrix}1\\0\end{pmatrix}}+c_{2}{\begin{pmatrix}0\\1\end{pmatrix}};} c 1 {\displaystyle c_{1}} c 2 {\displaystyle c_{2}} 是坐标。

如果矢量归一化, c 1 {\displaystyle c_{1}} c 2 {\displaystyle c_{2}} 的关联为 | c 1 | 2 + | c 2 | 2 = 1 {\displaystyle {|c_{1}|}^{2}+{|c_{2}|}^{2}=1} 。 基矢量表示为 | 0 = ( 1 0 ) {\displaystyle |0\rangle ={\begin{pmatrix}1\\0\end{pmatrix}}} | 1 = ( 0 1 ) {\displaystyle |1\rangle ={\begin{pmatrix}0\\1\end{pmatrix}}}

所有与该系统相关的可观测物理量均为2 × {\displaystyle \times } 2埃尔米特矩阵 ,这表示系统的哈密顿量也是相似矩阵。

可以通过以下步骤构建振荡实验:

如果 | 1 {\displaystyle |1\rangle } 是H的本征态且P(t)=1 ,那么就不会产生振荡。此外,如果两个态 | 0 {\displaystyle |0\rangle } | 1 {\displaystyle |1\rangle } 皆为简并态,那么包括 | 1 {\displaystyle |1\rangle } 在内的所有态皆为H的本征态。因此也不会产生振荡。

另一方面,若H无简并本征态,且初态不是本征态,则振荡将会产生。 双态系统哈密顿量的最一般形式给定如下

H = ( a 0 + a 3 a 1 i a 2 a 1 + i a 2 a 0 a 3 ) {\displaystyle \mathbf {H} ={\begin{pmatrix}a_{0}+a_{3}&a_{1}-ia_{2}\\a_{1}+ia_{2}&a_{0}-a_{3}\end{pmatrix}}}

a 0 , a 1 , a 2 {\displaystyle a_{0},a_{1},a_{2}} a 3 {\displaystyle a_{3}} 是实数。 这个矩阵可以分解为

H = a 0 σ 0 + a 1 σ 1 + a 2 σ 2 + a 3 σ 3 ; {\displaystyle \mathbf {H} =a_{0}\cdot \sigma _{0}+a_{1}\cdot \sigma _{1}+a_{2}\cdot \sigma _{2}+a_{3}\cdot \sigma _{3};}

σ 0 {\displaystyle \sigma _{0}} 是2 × {\displaystyle \times } 2单位矩阵, σ k ( k = 1 , 2 , 3 ) {\displaystyle \sigma _{k}\;(k=1,2,3)} 是泡利矩阵 。 尤其是在与时间无关的情况下,这种分解能够简化系统分析,其中 a 0 , a 1 , a 2 {\displaystyle a_{0},a_{1},a_{2}} a 3 {\displaystyle a_{3}} 是常数。考虑置于磁场 B = B z ^ {\displaystyle \mathbf {B} =B\mathbf {\hat {z}} } 之中的自旋1/2粒子。该系统的相互作用能量算符为

H = μ B = γ S B = γ   B   S z {\displaystyle \mathbf {H} =-{\boldsymbol {\mu }}\cdot \mathbf {B} =-\gamma \mathbf {S} \cdot \mathbf {B} =-\gamma \ B\ S_{z}} S z = 2 σ 3 = 2 ( 1 0 0 1 ) {\displaystyle S_{z}={\frac {\hbar }{2}}\,\sigma _{3}={\frac {\hbar }{2}}{\begin{pmatrix}1&0\\0&-1\end{pmatrix}}}

μ {\displaystyle \mu } 是粒子磁矩的大小, γ {\displaystyle \gamma } 是旋磁比 , σ {\displaystyle {\boldsymbol {\sigma }}} 是泡利矩阵之矢量。此处哈密顿量之本征态是 σ 3 {\displaystyle \sigma _{3}} ,而 | 1 {\displaystyle |1\rangle } | 2 {\displaystyle |2\rangle } 具有对应的本征值 E + = 2 γ B   E = 2 γ B {\displaystyle E_{+}={\frac {\hbar }{2}}\gamma B\,\ E_{-}=-{\frac {\hbar }{2}}\gamma B} 。 在任意状态 | ϕ {\displaystyle |\phi \rangle } 下,我们可以给出系统处于状态 | ψ {\displaystyle |\psi \rangle } 之概率 | ϕ | ψ | 2 {\displaystyle {|\langle \phi |\psi \rangle |}^{2}} 。在 t = 0 {\displaystyle t=0} 的时刻,让系统处于准备状态 | + X {\displaystyle \left|+X\right\rangle } 。 注意到 | + X {\displaystyle \left|+X\right\rangle } σ 1 {\displaystyle \sigma _{1}} 的本征态 :

| ψ ( 0 ) = 1 2 ( 1 1 ) = 1 2 ( 1 0 ) + 1 2 ( 0 1 ) {\displaystyle |\psi (0)\rangle ={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1\\1\end{pmatrix}}={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1\\0\end{pmatrix}}+{\frac {1}{\sqrt {2}}}{\begin{pmatrix}0\\1\end{pmatrix}}}

此处的哈密顿量与时间无关。 因此,通过求解平稳的薛定谔方程,在经过时间t之后,状态演变为 | ψ ( t ) = exp | ψ ( 0 ) = ( exp 0 0 exp ) | ψ ( 0 ) {\displaystyle \left|\psi (t)\right\rangle =\exp \left\left|\psi (0)\right\rangle ={\begin{pmatrix}\exp \left&0\\0&\exp \left\end{pmatrix}}|\psi (0)\rangle } ,带有系统总能量 E {\displaystyle E} 。因此经过时间t之后,状态成为:

| ψ ( t ) = e i E + t 1 2 | 0 + e i E t 1 2 | 1 {\displaystyle |\psi (t)\rangle =e^{\frac {-iE_{+}t}{\hbar }}{\frac {1}{\sqrt {2}}}|0\rangle +e^{\frac {-iE_{-}t}{\hbar }}{\frac {1}{\sqrt {2}}}|1\rangle }

现在假设在t时刻,对x方向上的自旋进行测量。 下式给出测量到自旋向上的概率:

| + X | ψ ( t ) | 2 = | 0 | + 1 | 2 ( 1 2 exp | 0 + 1 2 exp | 1 ) | 2 = cos 2 ( ω t 2 ) , {\displaystyle {\left|\langle +X|\psi (t)\rangle \right|}^{2}={\left|{\frac {\left\langle 0\right|+\left\langle 1\right|}{\sqrt {2}}}\left({{\frac {1}{\sqrt {2}}}\exp \left\left|0\right\rangle +{\frac {1}{\sqrt {2}}}\exp \left\left|1\right\rangle }\right)\right|}^{2}=\cos ^{2}\left({\frac {\omega t}{2}}\right),}

ω {\displaystyle \omega } 是特征角频率,假设 E E

相关

  • 盘尼西林青霉素(Penicillin,或音译盘尼西林)是指分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是由青霉菌中提炼出的抗生素。青霉素属于β-内酰胺
  • 行星运动的定律开普勒定律是由德国天文、数学家约翰尼斯·开普勒所发现、关于行星运动的定律。他于1609年在他出版的《新天文学》科学杂志上发表了关于行星运动的两条定律,又于1618年,发现了
  • 还原型黄素腺嘌呤二核苷酸黄素腺嘌呤二核苷酸(英语:FAD),又称活性型维生素B2、核黄素-5'-腺苷二磷酸,是一种参与了重要的代谢反应的氧化还原辅酶。FAD是一种比NAD和NADP更强的氧化剂,能被1个电子或2个电子
  • 菌膜生物薄膜(英语:biofilm),也称作“生物膜”或“菌膜”,是一些微生物细胞由自身产生的胞外多聚物基质(英语:Extracellular polymeric substance)(主要为多糖)所包围而形成,且附着在浸有液
  • 太阳能发电卫星可持续发展主题可再生能源主题环境主题太空太阳能(Space-based solar power, SBSP)又称为太阳能发电卫星、轨道发电机,自1970年代早期已在构想中的一种太阳能发电系统,在卫星轨
  • 天文物理天体物理学(英语:Astrophysics),又称天文物理学,是研究宇宙的物理学,这包括星体的物理性质(光度,密度,温度,化学成分等等)和星体与星体彼此之间的相互作用。应用物理理论与方法,天体物理
  • 嘉义市私立仁义高级中学嘉义市私立仁义高级中学,简称仁义高中,为一所位于台湾嘉义市东区的私立高中,原为纪念民国教育家吴稚晖所设立的。因招生情况有待改善,已被教育部列入转型辅导名单。
  • 鲁格Mini-14半自动步枪半自动鲁格Mini-14(英语:Ruger Mini-14)、鲁格Mini-30(英语:Ruger Mini-30)和鲁格Mini-6.8(英语:Ruger Mini-6.8)是一系列由美国枪械公司斯特姆–鲁格公司(Sturm Ruger)以M1卡宾枪及M14
  • 约翰·达利约翰·达利(John Darley,1938年4月3日-)是一位美国社会心理学家,以研究助人行为著称,目前是普林斯顿大学的心理学教授。从1956年到1960年,达利就读于斯沃斯莫尔学院(Swarthmore Coll
  • 岛津齐彬岛津齐彬(1809年4月28日-1858年8月24日),日本江户时代的大名,萨摩藩第十一代藩主、岛津氏第二十八代当主,文化六年三月十四生。幼名邦丸,通称又三郎,法名惟敬、麟洲,戒名顺圣院殿英德