拉比周期

✍ dations ◷ 2025-12-04 12:39:43 #原子物理学,量子光学

在物理学中,拉比周期是在振荡外场中的二能级量子体系的周期性行为。一个二能级系统具有两个可能的状态,如果状态不是简并的,当吸收一份能量以后,体系可以被激发。

这种效应在量子光学、核磁共振和量子计算中非常重要,它是以伊西多·伊萨克·拉比(Isidor Isaac Rabi)的名字命名的。

当一个原子(或者其它二能级体系)被一束相干光照射的时候,它将周期性地吸收光子并通过受激发射重新将光子发射出来,这样一个周期称为拉比周期,它的倒数称为拉比频率(英语:Rabi frequency)。

这种机制是量子光学的基础,其模型的建立可以依据杰恩斯-卡明斯模型和布洛赫矢量形式。

例如,对于频率受外部电磁场调制到激发态的二能级原子(该原子的电子可以处于激发态或者基态),利用布洛赫方程可以得到,原子处于激发态的机率为 | c b ( t ) | 2 = cos ( ω t ) 2 {\displaystyle |c_{b}(t)|^{2}=\cos(\omega t)^{2}\,} ,其中 ω {\displaystyle \omega \,} 为拉比频率(英语:Rabi frequency)。

更一般地,可以考虑一个没有本征态的二能级体系,如果这个体系初态位于其中一个能级,时间演化将导致每个能级的态密度按照某个特征频率振荡,其角频率也称为拉比频率(英语:Rabi frequency)。

拉比效应的数学细节请参见拉比问题(英语:Rabi_problem)。 例如,若将电磁场频率调至激发能,并于电磁场当中置入一个双态原子(该原子之电子可以处于激发态或基态),那么处于激发态原子之概率可以从Bloch方程得出:

| c b ( t ) | 2 sin 2 ( ω t / 2 ) {\displaystyle |c_{b}(t)|^{2}\propto \sin ^{2}(\omega t/2)}

ω {\displaystyle \omega } 是拉比频率。

更一般而言,我们可以考虑一种,两个能级都不是能量本征态的系统 。因此,如果在其中一个能级对系统初始化,则时间演化将使每个能级的总粒子数以某个特征频率振荡,其角频率也称为拉比频率。 该双态量子系统的状态可以表示为二维复希尔伯特空间矢量 ,这意味着每个状态矢量 | ψ {\displaystyle \vert \psi \rangle } 是以标准的复数坐标表示。

| ψ = ( c 1 c 2 ) = c 1 ( 1 0 ) + c 2 ( 0 1 ) ; {\displaystyle |\psi \rangle ={\begin{pmatrix}c_{1}\\c_{2}\end{pmatrix}}=c_{1}{\begin{pmatrix}1\\0\end{pmatrix}}+c_{2}{\begin{pmatrix}0\\1\end{pmatrix}};} c 1 {\displaystyle c_{1}} c 2 {\displaystyle c_{2}} 是坐标。

如果矢量归一化, c 1 {\displaystyle c_{1}} c 2 {\displaystyle c_{2}} 的关联为 | c 1 | 2 + | c 2 | 2 = 1 {\displaystyle {|c_{1}|}^{2}+{|c_{2}|}^{2}=1} 。 基矢量表示为 | 0 = ( 1 0 ) {\displaystyle |0\rangle ={\begin{pmatrix}1\\0\end{pmatrix}}} | 1 = ( 0 1 ) {\displaystyle |1\rangle ={\begin{pmatrix}0\\1\end{pmatrix}}}

所有与该系统相关的可观测物理量均为2 × {\displaystyle \times } 2埃尔米特矩阵 ,这表示系统的哈密顿量也是相似矩阵。

可以通过以下步骤构建振荡实验:

如果 | 1 {\displaystyle |1\rangle } 是H的本征态且P(t)=1 ,那么就不会产生振荡。此外,如果两个态 | 0 {\displaystyle |0\rangle } | 1 {\displaystyle |1\rangle } 皆为简并态,那么包括 | 1 {\displaystyle |1\rangle } 在内的所有态皆为H的本征态。因此也不会产生振荡。

另一方面,若H无简并本征态,且初态不是本征态,则振荡将会产生。 双态系统哈密顿量的最一般形式给定如下

H = ( a 0 + a 3 a 1 i a 2 a 1 + i a 2 a 0 a 3 ) {\displaystyle \mathbf {H} ={\begin{pmatrix}a_{0}+a_{3}&a_{1}-ia_{2}\\a_{1}+ia_{2}&a_{0}-a_{3}\end{pmatrix}}}

a 0 , a 1 , a 2 {\displaystyle a_{0},a_{1},a_{2}} a 3 {\displaystyle a_{3}} 是实数。 这个矩阵可以分解为

H = a 0 σ 0 + a 1 σ 1 + a 2 σ 2 + a 3 σ 3 ; {\displaystyle \mathbf {H} =a_{0}\cdot \sigma _{0}+a_{1}\cdot \sigma _{1}+a_{2}\cdot \sigma _{2}+a_{3}\cdot \sigma _{3};}

σ 0 {\displaystyle \sigma _{0}} 是2 × {\displaystyle \times } 2单位矩阵, σ k ( k = 1 , 2 , 3 ) {\displaystyle \sigma _{k}\;(k=1,2,3)} 是泡利矩阵 。 尤其是在与时间无关的情况下,这种分解能够简化系统分析,其中 a 0 , a 1 , a 2 {\displaystyle a_{0},a_{1},a_{2}} a 3 {\displaystyle a_{3}} 是常数。考虑置于磁场 B = B z ^ {\displaystyle \mathbf {B} =B\mathbf {\hat {z}} } 之中的自旋1/2粒子。该系统的相互作用能量算符为

H = μ B = γ S B = γ   B   S z {\displaystyle \mathbf {H} =-{\boldsymbol {\mu }}\cdot \mathbf {B} =-\gamma \mathbf {S} \cdot \mathbf {B} =-\gamma \ B\ S_{z}} S z = 2 σ 3 = 2 ( 1 0 0 1 ) {\displaystyle S_{z}={\frac {\hbar }{2}}\,\sigma _{3}={\frac {\hbar }{2}}{\begin{pmatrix}1&0\\0&-1\end{pmatrix}}}

μ {\displaystyle \mu } 是粒子磁矩的大小, γ {\displaystyle \gamma } 是旋磁比 , σ {\displaystyle {\boldsymbol {\sigma }}} 是泡利矩阵之矢量。此处哈密顿量之本征态是 σ 3 {\displaystyle \sigma _{3}} ,而 | 1 {\displaystyle |1\rangle } | 2 {\displaystyle |2\rangle } 具有对应的本征值 E + = 2 γ B   E = 2 γ B {\displaystyle E_{+}={\frac {\hbar }{2}}\gamma B\,\ E_{-}=-{\frac {\hbar }{2}}\gamma B} 。 在任意状态 | ϕ {\displaystyle |\phi \rangle } 下,我们可以给出系统处于状态 | ψ {\displaystyle |\psi \rangle } 之概率 | ϕ | ψ | 2 {\displaystyle {|\langle \phi |\psi \rangle |}^{2}} 。在 t = 0 {\displaystyle t=0} 的时刻,让系统处于准备状态 | + X {\displaystyle \left|+X\right\rangle } 。 注意到 | + X {\displaystyle \left|+X\right\rangle } σ 1 {\displaystyle \sigma _{1}} 的本征态 :

| ψ ( 0 ) = 1 2 ( 1 1 ) = 1 2 ( 1 0 ) + 1 2 ( 0 1 ) {\displaystyle |\psi (0)\rangle ={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1\\1\end{pmatrix}}={\frac {1}{\sqrt {2}}}{\begin{pmatrix}1\\0\end{pmatrix}}+{\frac {1}{\sqrt {2}}}{\begin{pmatrix}0\\1\end{pmatrix}}}

此处的哈密顿量与时间无关。 因此,通过求解平稳的薛定谔方程,在经过时间t之后,状态演变为 | ψ ( t ) = exp | ψ ( 0 ) = ( exp 0 0 exp ) | ψ ( 0 ) {\displaystyle \left|\psi (t)\right\rangle =\exp \left\left|\psi (0)\right\rangle ={\begin{pmatrix}\exp \left&0\\0&\exp \left\end{pmatrix}}|\psi (0)\rangle } ,带有系统总能量 E {\displaystyle E} 。因此经过时间t之后,状态成为:

| ψ ( t ) = e i E + t 1 2 | 0 + e i E t 1 2 | 1 {\displaystyle |\psi (t)\rangle =e^{\frac {-iE_{+}t}{\hbar }}{\frac {1}{\sqrt {2}}}|0\rangle +e^{\frac {-iE_{-}t}{\hbar }}{\frac {1}{\sqrt {2}}}|1\rangle }

现在假设在t时刻,对x方向上的自旋进行测量。 下式给出测量到自旋向上的概率:

| + X | ψ ( t ) | 2 = | 0 | + 1 | 2 ( 1 2 exp | 0 + 1 2 exp | 1 ) | 2 = cos 2 ( ω t 2 ) , {\displaystyle {\left|\langle +X|\psi (t)\rangle \right|}^{2}={\left|{\frac {\left\langle 0\right|+\left\langle 1\right|}{\sqrt {2}}}\left({{\frac {1}{\sqrt {2}}}\exp \left\left|0\right\rangle +{\frac {1}{\sqrt {2}}}\exp \left\left|1\right\rangle }\right)\right|}^{2}=\cos ^{2}\left({\frac {\omega t}{2}}\right),}

ω {\displaystyle \omega } 是特征角频率,假设 E E

相关

  • 水俣病水俣病(日语:水俣病),为公害病的一种,成因为汞中毒。1956年左右于熊本县水俣市附近发生,经确认后依地得名。不久,于新潟县发现的新公害病亦称为水俣病。其区别为:前者称熊本水俣病;后
  • 谭嗣同谭嗣同(1865年2月13日-1898年9月28日),字复生,号壮飞,斋名莽苍苍斋,湖南长沙浏阳人,出身世家,与陈三立、谭延闿并称“湖湘三公子”。清末百日维新著名人物,维新四公子及戊戌六君子之一
  • 放血疗法放血是将人的血液放出,以治疗、预防或者诊断疾病的替代医学疗法。放血在西方和中东的理论基础是古代医学的体液学说系统。该系统认为如果体液在人体内失去平衡,则会导致疾病。
  • 亚太营运中心亚太营运中心(英语:Asia-Pacific Regional Operations Center)是中华民国李登辉政府于1990年代推动的经济政策,以发展台湾成为亚太地区的经济枢纽为目标。所谓的“营运中心”是
  • 第一航空舰队第1航空舰队是大日本帝国海军的一个舰队,沿革上辖有航空母舰及基地航空部队。1941年(昭和16年)4月10日以海军中将南云忠一为司令长官编制成军。基干舰队有第1战队“赤城”“加
  • 吴长胜吴长胜(?-),中华人民共和国政治人物、外交官。1998年,接替邱小琪,担任中华人民共和国驻玻利维亚大使。2001年,由王永占接任,其接替马书学担任中华人民共和国驻巴哈马大使。2003年,由焦
  • 紫色紫色是一种颜色,在科学上有两种定义:
  • 斯科维尔指标 斯科维尔指标(英语:Scoville Scale)是1912年由美国化学家威尔伯·斯科维尔(Wilbur Scoville)所制订的度量辣椒素(Capsaicin)含量的一项指标。他以自己的姓“斯科维尔”(Scovi
  • 2004年1月2004年1月的新闻事件:请参看:
  • 迈克尔·波顿麦可伯恩特(英语:Michael Bolton,本姓:Bolotin,1953年2月26日-),美国著名唱作歌手,1975年出道,曾经醉心摇滚曲风,专辑总累计销售量达7.5千万张,多次赢得全美音乐奖及格莱美奖等殊荣。麦