介电质

✍ dations ◷ 2024-09-20 12:37:25 #电学,电介质,物质内的电场和磁场,材料科学,物理量

介电质(英语:dielectric)是一种可被电极化的绝缘体。假设将介电质置入外电场,则束缚于其原子或分子的束缚电荷不会流过介电质,只会从原本位置移动微小距离,即正电荷朝着电场方向稍微迁移位置,而负电荷朝着反方向稍微迁移位置。这会造成介电质电极化,从而在介电质内部产生反抗电场,减弱整个介电质内部的电场。假若介电质是由弱键结的分子构成,则这些分子不但会被电极化,也会改变取向,试着将自己的对称轴与电场对齐。

介电质通常指的是可被高度电极化的物质。在原子与分子层次,极化性可以用来衡量微观的电极化性质,从极化性可以理论计算出介电质的电极化率和电容率,两个巨观的电极化性质。或者,可以直接从实验测量出介电质的电极化率和电容率。假若置入了具有高电容率的介电质,则平行板电容器的电容会大幅增加,储存于两块金属平行板的正负电荷也会增加。

介电质的用途相当广泛。介电质的电传导能力很低,再加上具备有很好的电介质强度(英语:dielectric strength)(dielectric strength)性质,就可以用来制造电绝缘体。另外介电质可被高度电极化,是优良的电容器材料。对于介电性质的研究,涉及了物质内部电能和磁能的储存与耗散。用于解释电子学、光学和固态物理的各种各样现象,这研究极端重要。

回应麦可·法拉第的请求,英国科学家威廉·晖巍(William Whewell)命名所有可被电极化的绝缘体为介电质。

介电质因响应外电场的施加而极化的程度,可以用电极化率来衡量。从电极化率又可以计算出介电质的电容率。因此,电极化率会影响介电质内各种其它可能发生的现象,像电容器的电容、光波传播于物质内部的光速等等。

对于各向同性、线性、均匀的介电质,电极化率 χ e {\displaystyle \chi _{e}} 定义为

其中, E {\displaystyle \mathbf {E} } 是电场, P {\displaystyle \mathbf {P} } 是电极化强度, ϵ 0 {\displaystyle \epsilon _{0}} 是电常数。

由于电势移 D {\displaystyle \mathbf {D} } 定义为

所以,电势移与电场成正比:

其中, ϵ {\displaystyle \epsilon } 是电容率。

定义相对电容率 ϵ r {\displaystyle \epsilon _{r}} 为电容率与电常数的比例:

那么,介电质的电极化率与相对电容率的关系式为

在自由空间里,

假若介电质具有各向异性,则电极化率是一个二阶张量。

一般而言,物质无法为了要响应一个含时外电场的变化而瞬时地电极化。因此,更广义的表述必须将时间 t {\displaystyle t} 纳入考量:

那就是,电极化强度是先前时间的电场与含时电极化率 χ e ( Δ t ) {\displaystyle \chi _{e}(\Delta t)} 的折积。假设每当 Δ t = t t < 0 {\displaystyle \Delta t=t-t'<0} 时, χ e ( Δ t ) = 0 {\displaystyle \chi _{e}(\Delta t)=0} ,则这积分的上限可以延伸至无穷大:

瞬时的响应对应于狄拉克δ函数电极化率 χ e ( Δ t ) = χ e δ ( Δ t ) {\displaystyle \chi _{e}(\Delta t)=\chi _{e}\delta (\Delta t)}

对于一个线性系统,可以简单地做一个傅里叶变换,将这关系式写为频率 ω {\displaystyle \omega } 的函数:

这结果是折积定理的一个范例。

在频率空间,电极化强度与电场成正比,比例为电极化率乘以电常数。从电极化率的频率函数,可以描绘出物质的色散性质。

由于因果关系,电极化只能跟先前时间的电场有关(也就是说,每当 Δ t < 0 {\displaystyle \Delta t<0} 时,设定 χ e ( Δ t ) = 0 {\displaystyle \chi _{e}(\Delta t)=0} )。这事实迫使电极化率 χ e ( 0 ) {\displaystyle \chi _{e}(0)} 必须遵守克拉莫-克若尼约束。

介电质大致分为两类:55ff:

同一种介电质可能会涉及到几种不同的电极化机制,每一种电极化机制都有其主要活动频率,都有其特征的截止频率,超过这截止频率,对应的机制无法跟着电磁波振动,不再能贡献出电极化。对于每一种介电质,电极化机制的截止频率与电极化程度都不相同。

如左图所示,按照经典介电质模型,物质内部的每一个原子,都是由带负电荷的电子云和位于电子云中心、带正电荷的原子核所组成。假设将物质置入于外电场,则由于外电场的作用,正电荷会朝着外电场方向迁移位置,而负电荷则会朝着反方向迁移位置。正电荷与负电荷的相对位移会形成电偶极矩,这现象称为“电子极化”(electronic polarization)。由于外电场与电偶极矩的耦合,从而给出介电质的物理行为。像氦气、氖气等等一类的惰性气体最能展示出电子极化性质。假设将外电场关闭,则原子会回返原来状态。这过程所需要的时间称为弛豫时间(relaxation time)。:56-58:68

介电质的物理行为是由电场 E {\displaystyle \mathbf {E} } 与电偶极矩 p {\displaystyle \mathbf {p} } 之间的关系方程 p = p ( E ) {\displaystyle \mathbf {p} =\mathbf {p} (\mathbf {E} )} 给出。从这关系方程,可以预测出许多很有意思的物理现象,例如,折射率、色散、双折射、自聚焦(self-focusing)、谐波产生(harmonic generation)。

离子晶体中含有电荷量相等的阴离子和阳离子,并且这两种离子交替排列,整齐有规律,往往呈现出规则的几何外形。比如:氯化钠晶体呈现出立方体的空间构型,每个钠离子周围有上下前后左右共6个最近的等距离的氯离子;每个氯离子周围有上下前后左右共6个最近的等距离的钠离子。在正常状况,假设外电场为零,则巨观电偶极矩为零。但是,假设外电场不为零,则由于正离子会朝着外电场方向迁移位置,而负离子则会朝着反方向迁移位置。正离子与负离子之间的相对位移形成了“离子极化”(ionic polarization),又称为“原子极化”(atomic polarization)巨观电偶极矩不等于零。例如,氯化钠、氯化钾等等。:59:68

“取向极化”(orientation polarization)是一种特别的电极化,只出现于极性分子,又称为“二极性极化”(dipolar polarization)。这种电极化是由永久电偶极子的取向改变而产生。例如,氧原子与氢原子之间的非对称键。虽然在外电场为零的状况,每一个单独永久电偶极子仍具有极性。对于介电质内部任意位置,设定以此位置为中心的尺度够大的区域,将其内部所有电偶极矩的总合除以区域的体积,则可得到在这位置的巨观电极化强度。:59-60:68

假设施加非零外电场于此介电质,虽然正电荷与负电荷之间的距离,由于跟化学键有关,大致会保持不变,但是,感受到外电场的力矩,电偶极子会旋转,趋向于外电场的方向,从而增加巨观电极化强度。

这旋转过程发生的时间尺度与力矩和周围的局域黏滞性有关。这旋转过程不是瞬时的,由于在时间方面的延迟,假设电场的变化频率足够高,介电质会失去响应的能力。另外,电偶极子的旋转运动会造成摩擦和发热。水分子能够微波加热就是应用这效应。

处于电场的介电质,其内部的电荷载子可能会迁移一段距离,假若这些电荷载子的迁移运动被阻碍,例如在非均质材料的结构界面,由于电荷累积,会发生“界面极化”(interfacial polarization)现象。很多种陶瓷材料都会发生界面极化现象,特别是当处于高温状况。:60-61

上述几种电极化机制并不互相排斥。介电质的总电极化强度是所有可能电极化机制的总合。非均质介电质的总电极化强度 P T {\displaystyle \mathbf {P} _{T}} 为:61

其中, P e {\displaystyle \mathbf {P} _{e}} 是电子极化强度, P o {\displaystyle \mathbf {P} _{o}} 是取向极化强度, P a {\displaystyle \mathbf {P} _{a}} 是原子极化强度, P s {\displaystyle \mathbf {P} _{s}} 是界面极化强度。

均质介电质的总电极化强度 P T {\displaystyle \mathbf {P} _{T}}

对于像氦气、氖气一类的非极性介电质,由于没有离子键,

对于像氯化钠、氯化钾一类的离子晶体,由于在正常状况,取向极化强度为零,所以

由于含时外电场的作用,介电质内部的带电粒子会迁移位置。但是,这动作需要时间来完成。所以,对于外电场的变化,响应的电极化在时间方面必定会有所推迟。这意味着牵涉到的电极化机制密切地跟外电场的频率有关::81-82:

假设缓慢地调高频率,这些极化现象会一个接着一个的消失,电容率的趋势也会越来越低。在频率大于紫外线的频域,电极化率趋向于零,电容率趋向于电常数 ϵ 0 {\displaystyle \epsilon _{0}} 。因为电容率表现电极化强度与电场之间的关系,假若电极化的响应能力减弱,则电容率也会随之减小。

离子导电现象会对介电损耗 ϵ r {\displaystyle \epsilon _{r}''} 做出有限贡献。这现象时常会发生于湿物质,处于低频率电场的溶剂,其内部的自由离子会出现电解传导效应,这称为“离子导电”(ionic conduction),对介电损耗的影响,以方程表示为 σ / ω ϵ 0 {\displaystyle \sigma /\omega \epsilon _{0}} ;其中, σ {\displaystyle \sigma } 是电导率, ω {\displaystyle \omega } 是电场频率。

使用介电质材料最显著的优点是,能够防止两块分别储存正负电荷的平行板互相发生接触,从而造成短路。更重要的原因是,给定电压 V {\displaystyle V} ,高电容率可以促使更多电荷储存于平行板。这可以从电荷量 Q {\displaystyle Q} 与电容率的关系式得知:

其中, A {\displaystyle A} 为电容器平行板的面积, d {\displaystyle d} 为两块平行板之间的距离。

由于电容 C {\displaystyle C} 与电荷量的关系式为

给定电压,电容率越高,储存于平行板电荷量也变得越大,电容也会增高。

另外,制作电容器的介电质材料必需能够抵抗电离作用。这性质允许电容器能够在更高电压运作,不会过早因为电离作用而出现电流。

介电质共振器(orientation polarization)是一种电子元件,能够造成在狭窄频域内的共振,通常这狭窄频域为微波频带。介电质共振器的介电质材料是高电容率与低耗散因子(dissipation factor)的陶瓷。这种共振器时常用为震荡电路的频率参考。无屏蔽介电质共振器可以用为介电质共振器天线(dielectric resonator antenna)。

介电质可以是固体,液体,或气体。另外,高真空也是一种有用、无损失的介电质,虽然其相对电容率仅为1。

固态介电质被广泛使用于电子工业,是非常优良的绝缘体,例如瓷器、玻璃、大多数种类的塑胶。三种最广泛使用的气态介电质(gaseous dielectric)为空气、氮气与六氟化硫。

相关

  • 5第5周期元素是元素周期表中第五行(即周期)的元素。含有:第1周期元素 - 第2周期元素 - 第3周期元素 - 第4周期元素 - 第5周期元素 - 第6周期元素 - 第7周期元素 - 第8周期元素
  • Fe(NOsub3/sub)sub3/sub硝酸铁、硝酸铁(III)是铁(III)的硝酸盐,化学式为Fe(NO3)3·9H2O,相对分子质量为403.99。它是无色至暗紫色的潮解性晶体,可通过铁或氧化铁与硝酸反应制备。硝酸铁催化钠的液氨溶
  • Mg(NOsub3/sub)sub2/sub硝酸镁是镁元素的硝酸盐,具有吸湿性,在潮湿的空气中能快速与水反应形成六水合硝酸镁。硝酸镁易溶于水或乙醇。水溶液呈弱酸性。硝酸镁的主要用途是浓缩硝酸,并常被用于印刷业及
  • 台br /br /湾br /br /海br /br /峡br /坐标:24°48′40″N 119°55′42″E / 24.81111°N 119.92833°E / 24.81111; 119.92833台湾海峡(简称台海;欧洲早期称福尔摩沙海峡)指的是介于中国大陆东南沿海的福建与台湾之
  • 凯尔特语凯尔特语族是印欧语系下的一族语言。古时曾在西欧广泛使用,但今日使用此族语言的人口只存在于不列颠群岛上的一些地区和法国的布列塔尼半岛上。主要存在着四个族群,至于如何分
  • 金得臣金得臣(韩语:김득신;1754年-1822年),字贤辅(韩语:현보),号兢斋(韩语:긍재)、弘月轩(韩语:홍월헌),本贯开城金氏,朝鲜王朝后期画家,宫廷画工金应履之子,本人也是宫中图画署画工,与金弘道也以画风俗
  • Scyphozoa见内文钵水母纲(学名:Scyphozoa)是刺胞动物门的一个纲。例如水母、海蜇、海月水母、霞水母等。 这类水母早在寒武纪就已出现,直到现在。钵水母纲的学名Scyphozoa源于古希腊语的s
  • 截半立方体在几何学中,截半立方体是一种十四面体,由八个三角形与六个正方形组成,具有14个面、12个顶点以及24条边。是一种阿基米德立体,属于半正多面体和拟正多面体。其对偶多面体为菱形十
  • 康平路事件康平路事件是指上海工总司和赤卫队于1966年底在上海市委所在地康平路发生的一次大规模武斗,常被认为是文化大革命期间中国大陆大规模武斗的开端。1966年12月28日,上海工人“赤
  • 蟹肉饼蟹肉饼(英文:Crab cake)是一种于美国盛行的煎鱼饼(英语:fishcake),主要由蟹肉加上面包屑、美乃滋、芥末酱(或芥末粉)、蛋与香料等原料加以煸、焗烤、炙烤、炸或烘烤制作而成。蟹肉饼