幂数(英语:powerful number)也称为幂次数,是指一正整数为正整数(包括1在内),()来表示当1≤≤时,幂数的个数,则满足以下的不等式
。
佩尔方程2-82=1有无限多个正整数解,因此存在无限多组连续的幂数(若、为正整数解,则2及82即为二个连续的幂数),其中最小的是8和9。而8和9恰好也是唯一一组连续的次方数(卡塔兰猜想,后来已被数学家普雷达·米哈伊列斯库证明)。
每一个奇数都可以表示为二个连续数字的平方的差:( + 1)2 = 2 + 2k +12,因此 ( + 1)2 - 2 = 2 + 1。而每一个4的倍数都可以表示为二个彼此差2的正整数,其平方的差:( + 2)2 - 2 = 4 + 4。以上数字均可表示为二平方数的差,因此可就是二个幂数的差。
但无法被4整除的偶数(即奇偶数(英语:Singly even number))无法表示为二个平方数的差,但不确定是否可表示为二个幂数的差,然而Golomb发现以下的等式
以上的等式未包括6,Golomb猜想有无穷多个奇偶数无法表示为二个幂数的差,不过后来Narkiewicz发现6也可以表示为二个幂数的差:
而且可以找到无限多组的幂数,二个幂数之间的差为6。而McDaniel证明每个整数都有无限多组表示为二个幂数的差的方法。
保罗·埃尔德什猜想每一个足够大的整数均可表示为最多三个幂数的和,后来由Roger Heath-Brown证实了保罗·埃尔德什的猜想。
幂数的素因数分解中,所有的指数均不小于2。以此概念再延伸,若一整数的素因数分解中,所有的指数均不小于,可称为-幂数。
是由k-幂数所组成的等差数列,若1, 2, ..., 是由-幂数所形成的等差数列,公差为d,则
则是由+1个项-幂数所组成的等差数列。
以下是一个有关-幂数的恒等式:
因此可以找到无穷多组的-幂数,其个数为+1个,而这些-幂数的和也是-幂数。Nitaj证明了存在无穷多组互素的3-幂数、、,满足+=的形式。Cohn找到一个可产生无穷多组互素,且非立方数的3-幂数、、,可满足+=的方法:以下的数组
是方程323 + 493 = 813的解(因此323、493及813即为上述的3-幂数数组)。令′=(493 + 813), ′ = −(323 + 813), ′ = (323 − 493),再除以其最大公约数即为一组新的解。