希尔伯特第二十一问题是希尔伯特的23个问题之一:给定及一个线性表示(给定),是否存在一组上的Fuchs方程,使得其单值群由给出?
此问题的答案决定于其表述:如果我们容许明显的奇异点(即:其单值群是平凡的),并在复流形上的向量丛及其联络的意义下理解Fuchs方程,则答案是肯定的;否则存在反例。这是L. Plemelj、G. Birkhoff、I. Lappo-Danilevskij、P. Deligne与A. Bolibrukh等数学家的工作。
此问题有时亦称为黎曼-希尔伯特问题。数学家柏原正树与Zoghman Mebkhout已借助D-模的抽象语言将此结果推广到高维情形,称作黎曼-希尔伯特对应。