A无穷代数

✍ dations ◷ 2025-04-04 11:15:13 #同调代数,代数拓扑,代数,辛拓扑,数学物理

A无穷代数(A-infinity algebra,或 A {\displaystyle \;A_{\infty }\;} -algebra)是吉姆·斯塔谢夫(Jim Stasheff)在1960年代研究 H-空间的乘法的结合性时发现的一种代数结构,又称为强同伦结合代数(strongly homotopy associative algebra)。1970年代陈国才(K.-T. Chen)和T.V. Kadeishvili在一个流形的同调群上用不同的方法各自发现了一种A无穷代数结构。1990年代深谷贤治在研究辛流形的拉格朗日Floer同调(Lagrangian Floer Homology)时推广了斯塔谢夫的概念,称为A无穷范畴(A-infinity category, A {\displaystyle \;A_{\infty }\;} -category)。一般数学家把深谷的发现称为深谷范畴(Fukaya category)。

V {\displaystyle \;V\;} 是数域 k {\displaystyle \;k\;} 上的一个分次线性空间。 V {\displaystyle \;V\;} 上的一个A无穷代数结构是一组映射

满足以下4组关系:

从上面的定义可以看出,对于一个A无穷代数,它的同调实际上形成一个结合代数。这也就是一个A无穷代数称为强同伦结合代数的原因。

如果读者熟悉余代数的概念,那么考虑 V {\displaystyle \;V\;} 的元素度数降低1然后生成的张量代数,记为 T V {\displaystyle \;TV\;} T V {\displaystyle \;TV\;} 上有一个自然的余积,为

从而使 T V {\displaystyle \;TV\;} 成为一个上代数。 V {\displaystyle \;V\;} 上的一个A无穷代数结构就是 T V {\displaystyle \;TV\;} 上的一个余导子(coderivation) δ {\displaystyle \;\delta \;} 并且满足 δ 2 = 0 {\displaystyle \;\delta ^{2}=0\;} 。关于这两个定义的等价性证明可以参考下面 Markl-Shnider-Stasheff 的书。

Stasheff是怎样得到A无穷代数的结构的呢?我们下面以一个具体的例子,同时也是Stasheff所考虑的原型来说明。设 M {\displaystyle \;M\;} 是一个拓扑空间, x {\displaystyle \;x\;} 为其上一点。记

称为 M {\displaystyle \;M\;} 的环路空间(based loop space)。在 Ω M {\displaystyle \;\Omega M\;} 上我们可以定义一种乘法,如下:任给 γ 1 , γ 2 Ω M {\displaystyle \;\gamma _{1},\gamma _{2}\in \Omega M\;}

回忆学习基本群的时候,我们都验证过这样的乘法并不是结合的,但在同伦意义下是结合的:不难构造这样的同伦,记为 m ~ 3 {\displaystyle {\tilde {m}}_{3}}

使得 m ~ 3 ( 0 , ) = ( γ 1 γ 2 ) γ 3 ( ) , m ~ 3 ( 1 , ) = γ 1 ( γ 2 γ 3 ) ( ) {\displaystyle {\tilde {m}}_{3}(0,\cdot )=(\gamma _{1}\circ \gamma _{2})\circ \gamma _{3}(\cdot ),{\tilde {m}}_{3}(1,\cdot )=\gamma _{1}\circ (\gamma _{2}\circ \gamma _{3})(\cdot )\;} 。对于 Ω M {\displaystyle \;\Omega M\;} 里面的4个元素,我们有下面五种乘法,他们是相互同伦的,如下图所示:

图中1表示恒同映射。这样我们就得到了一个以圆周 S 1 {\displaystyle \;S^{1}\;} 为参数的一串从 {\displaystyle \;\;} M {\displaystyle \;M\;} 的映射。事实上因为这些映射的像都是重合的,因而我们实际上可以把这一串映射延拓到以 S 1 {\displaystyle \;S^{1}\;} 为边的圆盘 D 2 {\displaystyle \;D^{2}\;} 上,即为同伦之间的同伦,记为 m ~ 4 {\displaystyle \;{\tilde {m}}_{4}\;} 。如此一直进行下去,我们就得到 m ~ 5 , m ~ 6 , {\displaystyle \;{\tilde {m}}_{5},{\tilde {m}}_{6},\cdots \;} ,等等。在链水平上,我们把 m ~ n {\displaystyle \;{\tilde {m}}_{n}\;} 对应的映射记为 m n {\displaystyle \;m_{n}\;} ,则不难看出 m n {\displaystyle \;m_{n}\;} 就是满足上面A无穷代数定义的那些算子。

Stasheff的A无穷代数的概念自然地出现在关于一般代数结构的分解(resolution)的理论中。给定一个代数结构,我们希望能够通过对它的分解看清其中的结构(对比于流形,这样分解就是波斯尼科夫塔)。这其中,所谓的科祖分解是一种非常有效的分解方式,而A无穷代数则非常自然地出现在结合代数的Koszul分解过程当中:对于一个结合代数,它的科祖分解有一个A无穷代数结构,而这个A无穷代数的科祖分解又是一个A无穷代数,如此不已。但是,原来的结合代数和两次科祖分解后得到的A无穷代数实际上是链等价的,第二个分解和第四个分解也是如此,如此循环。这就是所谓的科祖对偶(Koszul duality(英语:Koszul duality))的概念。

对于李代数和交换代数,我们同样可以进行科祖分解。一个李代数的科祖分解有一个C无穷代数(C是交换commutativity的英文缩写)结构,而一个交换代数的科祖分解有一个李无穷代数结构。所谓李无穷代数和C无穷代数,正如A无穷代数一样,他们的同调分别是李代数和交换代数。李代数和交换代数分别是一种特殊的李无穷代数和C无穷代数。由一个李代数经过科祖分解后到C无穷代数然后再经科祖分解到李无穷代数,所得的这两个李无穷代数实际上是同伦等价的,对于交换代数也是如此。因此我们可以说,李代数和交换代数是相互科祖对偶的。这个结论实际上是奎伦在有理同伦论中发现的,他还证明,在有理系数下,这两个代数组成的范畴都和拓扑中的有理同伦型(rational homotopy type)组成的范畴是等价的(有一些单连通性条件)。后来 Sullivan通过考察流形的微分形式,得到了类似的结果,但是更几何,更直观。

考虑一个范畴 C {\displaystyle \;{\mathfrak {C}}\;} 。对于其中的四个对象及其之间态射

我们有

这显示了这些态射之间有一种结合性。一个A无穷范畴就是打破这些结合性,使之成为在同伦意义下是结合的,同时有高阶同伦算子,成为同伦的同伦,同伦的同伦的同伦,等等。因此一个A无穷范畴并不是一个范畴,而是同伦意义下的范畴:它的“同调”形成一个范畴。

深谷在研究辛拓扑的时候发现了这个A无穷范畴的结构。给定一个辛流形,考虑其中的拉格朗日子流形(Lagrangian submanifold)。对其中任意两个拉格朗日子流形,考虑所谓的拉格朗日Floer链复形,形成所谓的态射。深谷发现这些态射之间可以定义乘法,但是这个乘法本身不结合但在同伦意义下结合,他并构造了高阶同伦算子,使之成为一个A无穷范畴,现在称为深谷范畴。


Stasheff关于A无穷代数的构造见:

陈国才的 A {\displaystyle \;A_{\infty }\;} -代数的构造,并不是在文章中明显给出的,但不难推导,见:

Kadeishvili的文章发表于1980年,作者后来重新整理,题为On the homology theory of fiber spaces。原文见:

关于Koszul对偶,最经典的文章见:

Quillen的有理同伦论,见:

Sullivan的有理同伦论,见:

关于Fukaya范畴,见他的主页 页面存档备份,存于互联网档案馆上的文章,以及

相关

  • 阿拉斯加阿拉斯加州(英语:Alaska,i/əˈlæskə/)是美国位于北美洲最西北端的联邦州。州以东与加拿大的英属哥伦比亚省和育空地区相邻,最西端位于阿图岛,并与俄罗斯在白令海峡以西有一海上
  • 酱油 (网络语言)打酱油是源自中国大陆的汉语网络用语,原意是去商店购买酱油,后来衍生出两种用法:一个传统意思,“某某人的孩子都可以打酱油了”是指孩子很大了,可以帮着做家务,其父母不再年轻。另
  • 舌蝇科23舌蝇属(属名:Glossina,即采采蝇,来自英语:Tsetse /ˈsiːtsi/,美国 /ˈtsiːtsi/, 或 英国 /ˈtsɛtsi/)是双翅目舌蝇科(Glossinidae)下唯一的一个属,其下的蝇广泛分布于从撒哈拉沙漠
  • 川东行政区川东行政区是中华人民共和国建国后成立的省级行政区,于1950年至1952年存在。辖区大部分在今重庆市境。1949年12月,西南战役结束,解放军攻占四川全省。由于四川省地域较大,人口近
  • Open 粉圆Open 粉圆 (英语:Open Huninn),“粉圆”一词源于珍珠奶茶,是台湾字体公司 justfont 基于日本 MOTOYA 小杉圆体 制作的一套圆体字型。该字体以 SIL开源字体授权授出,与思源黑体和思
  • 杰弗里·胡恩杰弗里·‘杰夫’·威廉·胡恩(英语:Geoffrey William "Geoff" Hoon,1953年12月6日-),英国政治人物,前任国防大臣、下议院领袖兼掌玺大臣、欧洲事务国务大臣(英语:Minister of State
  • 富弼富弼(1004年-1083年),字彦国,中国宋朝政治家,河南(今河南洛阳东)人。富弼为官清正,颇有廉声。宋仁宗庆历二年(1042年)出使契丹,以增加岁币为条件,拒绝割地要求;次年任枢密副使,与范仲淹等共
  • 阳太阳阳太阳(1909年12月-2009年8月25日),原名阳焕,曾用名阳雪坞,男,汉族,广西桂林人,中国画家、诗人、艺术教育家,曾任广西壮族自治区政协副主席。
  • 防长经略防长经略(日语:防長経略/ぼうちょうけいりゃく )是天文24年(1555年)10月12日至弘治3年(1557年)4月3日为止,安艺国的战国大名毛利元就对大内氏的领土周防国和长门国的侵攻作战。毛利
  • 安藤麻吹安藤麻吹(あんどう まぶき、1969年3月30日-)为日本女性声优。福冈县出身。剧团俳优座所属。为西洋演员娜奥米·沃茨的配音员。担任许多国外影集的配音演出。粗体为主役。