金兹堡-朗道方程,或金兹堡-朗道理论,是由维塔利·金兹堡和列夫·朗道在1950年提出的一个描述超导现象的理论。早期的金兹堡-朗道方程只是一个唯象的数学模型,从宏观的角度描述了第一类超导体。1957年,苏联物理学家阿列克谢·阿布里科索夫基于金兹堡-朗道理论提出了第二类超导体的概念。1959年,列夫·戈尔科夫(英语:Lev Gor'kov)结合BCS理论,从微观角度严格证明了金兹堡-朗道理论是BCS理论的一种极限情况。为了表彰金兹堡和阿布里科索夫对超导理论的贡献,他们与研究超流理论的安东尼·莱格特共同获得了2003年的诺贝尔物理学奖。
金兹堡-朗道方程是由金兹堡和朗道在朗道的二级相变理论的基础上提出的。他们断言超导态可以通过一个复序参量(complex order parameter)ψ(r) 来表征。这个形似波函数的序参量测量的是超导体在低于超导转变温度Tc时的超导有序度("degree of superconducting order"),在BCS理论的框架中可以视为描述库柏对质量中心位置的单粒子波函数。在临界相变点附近,超导体的自由能密度 。对于 > (一般相),相干长度由以下方程给出:
对于 < (超导相),相干长度由以下方程给出:
第二个叫做穿透深度。这个概念最初是由伦敦兄弟在他们的伦敦理论中提出的。如果使用金兹堡-朗道模型中的参数来表示,穿透深度可以写作:
其中 表示在没有电磁场的条件下序参量的平衡值。外加磁场在超导体中的指数衰减可以通过穿透深度来定义。通过计算超导电子密度恢复到其平衡值 时产生的微小扰动,我们可以确定这个指数衰减。磁场的指数衰减与高能物理中的希格斯机制是等价的。
朗道还定义了一个参数。 = <1/>1/。如此一来,金兹堡-朗道理论通过定义这两个长度,就表征了所有的超导体。
金兹堡-朗道方程可化为以下形式的非线性偏微分方程:
其中是一个复值函数,且有{x∈ℝ, t≥0};a和c为复常数,b∈ℝ。若假设a、b、c都是正实数,则金兹堡-朗道方程有下列行波解:
部分解析解的行为如下所示: