金兹堡-朗道方程

✍ dations ◷ 2025-11-22 12:45:12 #低温物理学,方程,超导体,非线性偏微分方程,孤立子

金兹堡-朗道方程,或金兹堡-朗道理论,是由维塔利·金兹堡和列夫·朗道在1950年提出的一个描述超导现象的理论。早期的金兹堡-朗道方程只是一个唯象的数学模型,从宏观的角度描述了第一类超导体。1957年,苏联物理学家阿列克谢·阿布里科索夫基于金兹堡-朗道理论提出了第二类超导体的概念。1959年,列夫·戈尔科夫(英语:Lev Gor'kov)结合BCS理论,从微观角度严格证明了金兹堡-朗道理论是BCS理论的一种极限情况。为了表彰金兹堡和阿布里科索夫对超导理论的贡献,他们与研究超流理论的安东尼·莱格特共同获得了2003年的诺贝尔物理学奖。

金兹堡-朗道方程是由金兹堡和朗道在朗道的二级相变理论的基础上提出的。他们断言超导态可以通过一个复序参量(complex order parameter)ψ(r) 来表征。这个形似波函数的序参量测量的是超导体在低于超导转变温度Tc时的超导有序度("degree of superconducting order"),在BCS理论的框架中可以视为描述库柏对质量中心位置的单粒子波函数。在临界相变点附近,超导体的自由能密度 f {\displaystyle f} 。对于 > (一般相),相干长度由以下方程给出:

对于 < (超导相),相干长度由以下方程给出:

第二个叫做穿透深度。这个概念最初是由伦敦兄弟在他们的伦敦理论中提出的。如果使用金兹堡-朗道模型中的参数来表示,穿透深度可以写作:

其中 表示在没有电磁场的条件下序参量的平衡值。外加磁场在超导体中的指数衰减可以通过穿透深度来定义。通过计算超导电子密度恢复到其平衡值 时产生的微小扰动,我们可以确定这个指数衰减。磁场的指数衰减与高能物理中的希格斯机制是等价的。

朗道还定义了一个参数。 = λ {\displaystyle \lambda } <1/ 2 {\displaystyle {\sqrt {2}}} >1/ 2 {\displaystyle {\sqrt {2}}} 。如此一来,金兹堡-朗道理论通过定义这两个长度,就表征了所有的超导体。

金兹堡-朗道方程可化为以下形式的非线性偏微分方程:

u t a 2 u x 2 b u + c | u | 2 u = 0 {\displaystyle {\frac {\partial u}{\partial t}}-a{\frac {\partial ^{2}u}{\partial x^{2}}}-bu+c|u|^{2}u=0}

其中 u ( x , t ) {\displaystyle u(x,t)} 是一个复值函数,且有{x∈ℝ, t≥0};a和c为复常数,b∈ℝ。若假设a、b、c都是正实数,则金兹堡-朗道方程有下列行波解:


部分解析解的行为如下所示:


相关

  • 发病率和死亡率周报发病率和死亡率周报(Morbidity and Mortality Weekly Report,简称:MMWR)为一份美国疾病控制与预防中心发行的美国流行病学摘要周刊。1981年6月5日MMWR发布一份5位病人的病情案例
  • 胚层胚层(germ layer)亦称为生殖上皮,但较少使用,是动物胚胎形成时的一群细胞。所有动物都具有胚层,其中脊椎动物的三胚层构造特别显著,而海绵动物的胚层最为简单。真后生动物(比海绵复
  • 孤对电子孤电子对(英语:lone pair,或称孤对电子)是不与其他原子结合或共享的成对价电子。存在于原子的最外围电子壳层。 孤对电子在分子中的存在和分配影响分子的形状等,对轻原子组成的分
  • 蜱螨亚纲以及text蜱螨亚纲(Acari)是节肢动物蛛形纲下的一个分类元,原为蜱螨目(Acarina),现时升格成为一个亚纲。本分类元有30,000左右的物种,包括了蜱、螨、盲蛛、疥瞒、恙螨、寄螨等物种
  • 库尔德语库尔德语(كوردي, Kurdî‎ .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium
  • 台湾文献馆国史馆台湾文献馆(简称台湾文献馆)是中华民国政府维护与保存台湾相关史政文献的专责机构,前身为台湾省政府设置的“台湾省文献委员会”,精省后改为现名并成为国史馆唯一的附属机
  • 浙派浙派,是一个泛化了的概念,凡与浙江及其人物群体有关的学术或艺术派别,通常会冠之以“浙派”。现今较为经常提到的有:浙派绘画是明代前期中期中国画坛的重要绘画流派,明代中后期浙
  • 分子间作用力分子间作用力(Intermolecular force),亦称分子间引力,指存在于分子与分子之间或高分子化合物分子内基团之间的作用力,简称分子间力。它主要包括:此外科学家也不断研究新的分子间作
  • 懒惰删除在计算机科学中,懒惰删除(英文:lazy deletion)指的是从一个散列表(也称哈希表)中删除元素的一种方法。在这个方法中,删除仅仅是指标记一个元素被删除,而不是整个清除它。被删除的位
  • 克萨尔特南戈克萨尔特南戈(西班牙语:Quetzaltenango),为危地马拉克萨尔特南戈省首府,亦是危地马拉第二大城市。 其玛雅语别称为塞拉胡(Xelajú)或塞拉(Xela)。据估计,克萨尔特南戈市人口达到224,70