费雪方程式

✍ dations ◷ 2025-07-27 15:58:21 #金融数学,宏观经济学,方程,通货膨胀

费雪方程式(英语:Fisher equation)是数理经济学和金融数学的费沙效应理论,它概括了通货膨胀情况下,名义利率和真实利率的关系。

这条方程式以美国经济学家欧文·费雪命名,因为后者在其著作《利息理论》中说明了这条方程式及内里的函数彼此的关系。金融学上,费雪方程式主要使用在债券的孳息率曲线或者投资的内部报酬率的计算。经济学上,方程式的应用则是预测名义和实际利率。经济学家常用 π {\displaystyle \pi } 表示通货膨胀率。

r {\displaystyle r} 代表实际利率、 i {\displaystyle i} 代表名义利率、 π {\displaystyle \pi } 表示通货膨胀率,因此费雪方程式即是:

i r + π {\displaystyle i\approx r+\pi }

方程式是线性近似关系,但一般都写作均等式:

i = r + π {\displaystyle i=r+\pi }

费雪方程式可用作“事前”或者“事后”分析。如果进行“事后”分析,方程式可写为:

r = i π {\displaystyle r=i-\pi }

描述一笔贷款的实际购买力。

把费雪方程式重新排列为“附加预期的费雪方程式”,给予一个所需的实际回报率和一个一段时间内贷款的预期通货膨胀率, π e {\displaystyle \pi ^{e}} ,以“事前”分析决定贷款应该收取的名义利率:

i = r + π e {\displaystyle i=r+\pi ^{e}}

此方程其实在费雪之前已经存在,但费雪建议使用以下较佳的近似版本。近似式可从这条准确式推导而来:

1 + i = ( 1 + r ) ( 1 + π ) . {\displaystyle 1+i=(1+r)(1+\pi ).}

即使代表时间的下标符号有时候被省略,费雪方程式要说明的便是名义利率和实质利率的关系,这是通过通货膨胀导致两个时间点之间的价格水平的百分比改变。

所以,假设某人在时期T购买$1债券,利率是 i t {\displaystyle i_{t}} 。如果债券在时期t+1被赎回,那位债券持有人的回报便是 ( 1 + i t ) {\displaystyle (1+i_{t})} 元。但是,如果价格水平在t和t+1之间已经发生改变,从债券所得到的真实收益就会是

( 1 + r t + 1 ) = ( 1 + i t ) / ( 1 + π t + 1 ) {\displaystyle (1+r_{t+1})=(1+i_{t})/(1+\pi _{t+1})}

下式则可求出名义利率:

1 + i t = ( 1 + r t + 1 ) ( 1 + π t + 1 ) {\displaystyle 1+i_{t}=(1+r_{t+1})(1+\pi _{t+1})} (1)

扩展此式, (1) 变成:

1 + i t = 1 + r t + 1 + π t + 1 + r t + 1 π t + 1 {\displaystyle 1+i_{t}=1+r_{t+1}+\pi _{t+1}+r_{t+1}\pi _{t+1}}

i t = r t + 1 + π t + 1 + r t + 1 π t + 1 {\displaystyle i_{t}=r_{t+1}+\pi _{t+1}+r_{t+1}\pi _{t+1}}

假设真实利率和通胀率皆是相当小,(或许在百分之几,这要取决于实际情况) r t + 1 + π t + 1 {\displaystyle r_{t+1}+\pi _{t+1}} 较大于 r t + 1 π t + 1 {\displaystyle r_{t+1}\pi _{t+1}} ,因此 r t + 1 π t + 1 {\displaystyle r_{t+1}\pi _{t+1}} 被放弃,给出最终近似值:

更正式地,这线性近似 可从两个一阶泰勒展式求出,即使:

合并这些孳息率的近似值:

因此 r i π . {\displaystyle r\approx i-\pi .}

2050年3月8日到期,票面息率为4.25%的英国政府债券的市场回报率为每年3.81%。假设可知这张债券的实质利率为2%,通货膨胀率等于原有利率溢价1.775%(假设不需要风险溢价,因此这张政府债券属于“无风险”):

1.02 × 1.01775 = (1 + 0.02) × (1 + 0.01775) = 1.0381

这里假设我们可以忽略扩展式(0.02 × 0.01775 = 0.00035 or 0.035%)最不重要的部分,从近似形式的费雪方程式计算,即是2%+1.775%=3.775%,这数字跟3.81%非常接近。

当每年名义回报率3.81%,每张面值为100英镑的债券价格为107.84英镑;如果回报率为每年3.775%,每张面值为100英镑的债券价格为108.50英镑,或者略多于66便士。

2005年最后一季真正的政府债券市场交易平均交易额是1000万英镑。所以,每100英镑的债券的价格计算假若存在66便士的差异,交易则会有66000英镑的价差。

费雪方程式对通胀挂钩债券的交易有着重要的影响,通货膨胀、实质利率、名义利率之间达到饱和点上的均衡会驱使票息的改变。

相关

  • 威尼斯威尼斯(威尼斯语:Venezsia;意大利语:Venezia;弗留利语:Vignesie;拉丁语:Venetia;英文:Venice)是意大利东北部著名的旅游与工业城市,也是威尼托地区的首府。威尼斯城由被运河分隔并由桥梁
  • 教师教师(英语:Teachers,中文口语也常称作“老师”,旧称“先生”),又称作教育工作者、教员,是大众对教育从业者的称呼,是培养社会所需人才的专业。于教育机构;因应社会需要,亦有家庭教师的
  • 袋棍球袋棍球(Lacrosse),又译长曲棍球、曲棍网球、棍网球、兜网球、袋球或网棒球,是一种使用顶端具有网状袋子的长棍作为持球工具的团队球类运动。起源于北美原住民部落,原本不限人数,最
  • 田径田径(英语:Athletics),或称田径运动(英语:Sport of Athletics)、陆上竞技,是田赛和径赛(英语:Track and Field)、全能比赛的统称。以高度和距离长度计算成绩的跳跃、投掷项目叫“田赛”
  • 混合动力车混合动力车辆是使用两种或以上能量来源驱动的车辆,而驱动系统可以有一套或多套。常用的能量来源有燃油、电池、燃料电池、太阳能电池、压缩气体等,而常用的驱动系统包含内燃机
  • 逊尼派逊尼派(阿拉伯语:أهل السنة والجماعة‎,ʾAhl ūs-Sunnah wa āl-Ǧamāʿah,简称أهل السنة‎ ʾAhl ūs-Sunnah),又译素尼派,原意为遵循圣训者,为伊斯兰教
  • 疣鼻天鹅疣鼻天鹅别名瘤鼻天鹅、哑音天鹅、赤嘴天鹅、瘤鹄、亮天鹅、丹鹄(古名)等。是一种大型的游禽,体色洁白,脖颈细长,前额有一块瘤疣的突起,因此得名。疣鼻天鹅分布广泛,大量在欧洲,少数
  • 北国英雄《北国英雄》,原名《雪女王》,是一部由北京金色池塘传媒股份有限公司出品的,近代革命题材的,抗日战争剧。该剧由杨阳执导,王裕仁担任总制片,郭品超、热依扎、乔任梁、安志杰、尹铸
  • 虚拟社区虚拟社区,又称电子社群或电脑社群,是互联网用户交互后,产生的一种社会群体,由各式各样的网络社群所构成。虚拟社区一词在Howard Rheingold于1993年出版的“虚拟社区”一书被介绍
  • 贾雅普拉卡什·纳拉扬贾雅普拉卡什·纳拉扬(Jayaprakash Narayan; listen 帮助·信息;1902年10月11日 - 1979年10月8日),普遍被称为JP或Lok Nayak(印地语中为人民领袖),是印度独立活动家、理论家和政治