伽罗瓦群

✍ dations ◷ 2025-12-09 19:01:41 #域论,群论,伽罗瓦理论

伽罗瓦群(法语:Groupe de Galois)是抽象代数中域论的概念,表示与某个类型的域扩张相伴的群,是伽罗瓦理论的基础概念。域扩张源于多项式。通过伽罗瓦群研究域扩张以及多项式的理论,称为伽罗瓦理论,是十九世纪法国数学家埃瓦里斯特·伽罗瓦为了解决“高次多项式方程是否有根式解”的问题而创造的。后世也以他的名字命名相关的概念。

用置换群更初等地讨论伽罗瓦群,参见伽罗瓦理论一文。

设有域扩张L/K。考虑所有L上的K-自同构集合。此处的K-自同构指的是L映射到L的环同构,且其限制在K上的部分是平凡的(即为恒等映射)。用数学语言描述,一个K-自同构是指满足以下条件的同态σ:15-16:125:

可以证明,对任意的域扩张L/K,所有L上的K-自同构关于映射的复合运算构成群,称为域扩张L/K的自同构群,记作Aut():16。

如果L/K是一个伽罗瓦扩张,则Aut()称为扩张L/K上的伽罗瓦群,通常记做 Gal()(有些文献中记作Gal( : )):16。

在某些介绍伽罗瓦理论的专著中,也会将任何域扩张上的自同构群都称为伽罗瓦群,并记作Gal()σ:125。

F是一个域, Q , R , C {\displaystyle \mathbb {Q} ,\mathbb {R} ,\mathbb {C} } ()表示在F中添加元素a生成的域扩张。


设有域扩张L/K,则其自同构群Aut()满足:

设域扩张L/K为伽罗瓦扩张。以下的性质均可以在没有伽罗瓦理论基本定理的情况下证明。

伽罗瓦扩张的重要性在于,有限的伽罗瓦扩张满足伽罗瓦理论基本定理:伽罗瓦群的子群与域扩张的中间域之间存在着反向包含的一一对应关系。

如果Gal()是伽罗瓦扩张,则伽罗瓦群Gal()上可以装备一个拓扑,称为克鲁尔拓扑(英语:Krull topology),使其成为一个投射有限群(英语:profinite group)。在此拓扑下,即便Gal()是无限扩张,其伽罗瓦群的闭子群与域扩张的中间域存在着反向包含的一一对应关系,有类似伽罗瓦理论基本定理的结论。

相关

  • interleukin 10n/an/an/an/an/an/an/an/an/an/a白细胞介素-10(Interleukin 10,IL-10,白介素-10),也称为人细胞因子合成抑制因子(cytokine synthesis inhibitory factor,CSIF),是一种抗炎症细胞。在
  • UTC-8UTC−08:00时区比协调世界时慢8小时,使用区域如下:使用UTC-8为夏令时间的地方:
  • 口角炎口角炎(英语:Angular cheilitis or Angular Stomatitis, perlèche),或称烂嘴角,为发生在嘴唇一侧或两侧角落部位的炎症,通常为两侧同时发炎。此症是唇炎(cheilitis)的一种形式,发炎部
  • 皮埃尔·莫雷尔皮埃尔·莫瑞尔(英语:Pierre Morel,1964年5月12日-)是一位法国摄影师和导演,执导过较出名的作品如《暴力街区》(2004年)、《飓风营救》(2008年)和《间谍游戏巴黎》(2010年)。
  • 根肿黑粉菌目根肿黑粉菌属 Entorrhiza Talbotiomyces根肿黑粉菌纲(学名:Entorrhizomycetes)是担子菌门黑粉菌亚门下的一个纲。该纲仅含一个目(根肿黑粉菌目,Entorrhizales),该目下也仅含一个科(
  • 丹佛轻轨丹佛轻轨(英语:RTD Light Rail),全称是地区交通局轻轨(Regional Transportation District light rail) ,是在美国科罗拉多州丹佛地区由丹佛地区交通局运营的一个轻轨系统。该系统有
  • 巴厘猫巴厘猫(Balinese)是一种长毛的家猫,毛色近似暹罗猫,有天蓝色的眼睛。它实际就是由暹罗猫培育出来的长毛品种。与暹罗猫一样,其性格十分活跃。虽然名字里有巴里二字,但它本身与巴厘
  • 2017年2月逝世人物列表2017年2月逝世人物列表,是用于汇总2017年2月期间逝世人物的列表。
  • 戴自英戴自英,1914年出生,中国著名传染病学家,中国临床抗生素研究的先驱和奠基人。浙江宁波人。1938年,毕业于原上海医学院。后来曾担任上海医学院的副教授。1947年,赴英国留学,入读英国
  • 戴更基戴更基,是台湾动物行为学专家,也是一位跨足动物行为领域的兽医师。1991年7月10日创立大敦宠物医院,1997年创立dvm网站,免费提供民众咨询医疗及行为问题。2004年起就开创了台湾最