莱恩-埃姆登方程

✍ dations ◷ 2025-04-02 12:49:19 #天体物理学,恒星天文学,常微分方程

莱恩-埃姆登方程(Lane–Emden equation)是天文物理中一个表现自引力势能,球对称多方流体的无量纲泊松方程。此方程名字由来于强纳生·荷马·莱恩与罗伯特·埃姆登。此方程的解表示了恒星在半径 r {\displaystyle r} 代表核心的压力与密度。 n {\displaystyle n} 是多方指数;多方指数与代表气体压力及密度的多方方程有关系。

P {\displaystyle P} 是代表压力, ρ {\displaystyle \rho } 则是密度,而 K {\displaystyle K} 则是比例常数。标准的边界条件则是 θ ( 0 ) = 1 {\displaystyle \theta (0)=1} θ ( 0 ) = 0 {\displaystyle \theta '(0)=0} 。因此该方程的解是描述恒星压力和密度与半径的关系,并且给定的多方指数 n {\displaystyle n} 也是多方球的多方指数 n {\displaystyle n} 。流体静力平衡与势能、密度、压力梯度有关;泊松方程与势能、密度有关。

在物理学上,流体静力平衡与势能梯度、密度和压力梯度相关,而泊松方程则可以是势能和密度的关系式。因此如果有一个方程可以进一步指出压力和密度如何互相反映,就可以得到一个解。以上多方气体的特定选项在数学上陈述了这个问题,尤其是该陈述特别简洁并推导出了莱恩-埃姆登方程。这个方程对于恒星等自引力势能气体球是相当有用的近似,但它的假设通常是受到限制。

考虑到自引力势能、流体静力平衡下的球对称流体、质量守恒这些状况,就可使用以下连续性方程:

这里 ρ {\displaystyle \rho } r {\displaystyle r} 的函数。流体静力平衡的公式成为:

m {\displaystyle m} 也是 r {\displaystyle r} 的公式。再一次求导数可得:

这里已经使用一个连续性方程取代质量梯度。再将方程两侧乘上 r 2 {\displaystyle r^{2}} ,并将带有 P {\displaystyle P} 的导数的项置于左侧,方程成为:

方程两侧除以 r 2 {\displaystyle r^{2}} ,在某些意义上这是一维形式所需的方程。此外,如果我们以多变方程 P = K ρ c 1 + 1 n θ n + 1 {\displaystyle P=K\rho _{c}^{1+{\frac {1}{n}}}\theta ^{n+1}} ρ = ρ c θ n {\displaystyle \rho =\rho _{c}\theta ^{n}} 代入,可得到:

将常数聚集并以 r = α ξ {\displaystyle r=\alpha \xi } 取代:

最后得到莱恩-埃姆登方程:

同样地,也可以使用泊松方程进行推导:

我们可以透过以下数学公式以流体静力平衡取代势能梯度:

最后也可以得到莱恩-埃姆登方程。

n {\displaystyle n} 只在3个值时有解析解

如果 n = 0 {\displaystyle n=0} ,方程成为:

重新整理并进行一次积分后的公式成为:

公式两侧都除以 ξ 2 {\displaystyle \xi ^{2}} ,并且再积分一次后得到:

边界条件 θ ( 0 ) = 1 {\displaystyle \theta (0)=1} θ ( 0 ) = 0 {\displaystyle \theta '(0)=0} 暗示积分常数是 C 0 = 1 {\displaystyle C_{0}=1} C 1 = 0 {\displaystyle C_{1}=0}

n = 1 {\displaystyle n=1} ,方程可展开如下:

两端都乘以 ξ 2 {\displaystyle \xi ^{2}} 可得到 k = 1 {\displaystyle k=1} n = 0 {\displaystyle n=0} 的球贝索函数。套用了边界条件以后的解将是:

在经过一连串取代的步骤后,方程可以有进一步的解:

n = 5 {\displaystyle n=5} ,方程的解将是循着径向的无限大值。

一般情形下莱恩-埃姆登方程的解必须以数值积分方式求得。许多数值积分的标准解法要求该问题必须以一阶常微分方程表示,例如:

在这里 ϕ ( ξ ) {\displaystyle \phi (\xi )} 被视为无量纲质量,而质量可使用 m ( r ) = 4 π α 3 ρ c ϕ ( ξ ) {\displaystyle m(r)=4\pi \alpha ^{3}\rho _{c}\phi (\xi )} 表示。相关的边界条件是 ϕ ( 0 ) = 0 {\displaystyle \phi (0)=0} θ ( 0 ) = 1 {\displaystyle \theta (0)=1} 。第一个方程表现了流体静力平衡,而第二个方程则表示质量守恒。

已知如果 θ ( ξ ) {\displaystyle \theta (\xi )} 是莱恩-埃姆登方程的解,那么完整的解方程将是 C 2 / n + 1 θ ( C ξ ) {\displaystyle C^{2/n+1}\theta (C\xi )} 。和这方式相关的解则称为“同调”,而转换的过程是同调性的。如果我们选择不变的变量达到同调性,就可以将莱恩-埃姆登方程降一阶计算。

而这类可选择的变量有多个,一个适当的选择是:

我们可以将相对于 ξ {\displaystyle \xi } 的变量的对数微分,得到:

最后,我们将以上两个方程相除以消去应变量 ξ {\displaystyle \xi } ,留下:

以上即为单一一阶方程。

同调性不变的方程可被视为自主对方程:

这些方程的解的形式可透过以下线性稳定性分析来决定。方程的临界点(当 d V / d log ξ = d U / d log ξ = 0 {\displaystyle dV/d\log \xi =dU/d\log \xi =0} )和雅可比矩阵的特征值、特征矢量如下表所示:

相关

  • 甲硫氨酸的再生甲硫氨酸(英语:Methionine,又称蛋氨酸),在所有后生动物中它是一种必需氨基酸。与半胱氨酸一起,甲硫氨酸是两个含硫蛋白原氨基酸之一。对人而言是唯一的含硫必需氨基酸,有L型及D型两
  • 星际尘埃宇宙尘(英语:Cosmic Dust)是由众多细小粒子组成的一种固态尘埃,自宇宙大爆炸起,便四散在浩瀚宇宙之中。宇宙尘的组成包含硅酸盐、碳等元素以及水分,部分来自彗星、小行星等星体的
  • 腐生苔属Cryptothallus hirsutus Cryptothallus mirabilis(英语:Cryptothallus mirabilis)腐生苔属(学名:Cryptothallus)又称隐片苔属,是属于绿片藓科(英语:Aneuraceae)的一种地钱,此类植物植株
  • 海法海法(希伯来语:חֵיפָה‎ Ḥeifa;阿拉伯语:حَيْفَا,Ḥayfā,是以色列北部港口城市,西濒地中海,背倚迦密山。1948年以色列建国。目前海法是以色列第三大城市,仅次于西耶路
  • 莽原之役Indecisive (Union offensive continued)莽原之役(Battle of Wilderness),爆发于1864年5月5日至7日。1864年5月3日,格兰特麾下波多马克军团的十三万大军南下弗吉尼亚州,追赶兵败
  • 巴基斯坦三军情报局巴基斯坦三军情报局(乌尔都语:انٹر سروسز انٹلیجنس‎‎;英语:Directorate for Inter-Services Intelligence,简称ISI)是巴基斯坦最大的情报机关,成立于1948年,其主
  • 脱氧鸟苷单磷酸去氧鸟苷单磷酸(Deoxyguanosine monophosphate,dGMP)是一种结构与鸟苷单磷酸相似,但五碳糖的2号碳上少了一个-OH基的分子,并由单一的氢原子取而代之。
  • 黑子 (歌舞伎)黑子,通常又叫黑衣(黒衣(くろご)),是指歌舞伎中,身着黑衣并负责舞台布置的演员。黑子除了身着黑衣外,还要用黑布蒙面。有些西方电影更将黑子与忍者混为一谈。另外,除了穿黑衣外,在表现
  • 华东师范大学档案馆华东师范大学档案馆是华东师范大学的一个直属单位,成立于1988年6月。1997年被认定为国家科技事业单位一级档案馆。华东师范大学校史党史办公室与华东师范大学档案馆合署办公,
  • 迈克尔·威廉·巴尔夫迈克尔·威廉·巴尔夫(英语:Michael William Balfe,1808年5月15日-1870年10月20日),爱尔兰作曲家。父亲是一位舞蹈教师,巴尔夫7岁时就开始演奏小提琴,后来到伦敦学习,1825年到意大利