莱恩-埃姆登方程

✍ dations ◷ 2025-12-06 01:10:22 #天体物理学,恒星天文学,常微分方程

莱恩-埃姆登方程(Lane–Emden equation)是天文物理中一个表现自引力势能,球对称多方流体的无量纲泊松方程。此方程名字由来于强纳生·荷马·莱恩与罗伯特·埃姆登。此方程的解表示了恒星在半径 r {\displaystyle r} 代表核心的压力与密度。 n {\displaystyle n} 是多方指数;多方指数与代表气体压力及密度的多方方程有关系。

P {\displaystyle P} 是代表压力, ρ {\displaystyle \rho } 则是密度,而 K {\displaystyle K} 则是比例常数。标准的边界条件则是 θ ( 0 ) = 1 {\displaystyle \theta (0)=1} θ ( 0 ) = 0 {\displaystyle \theta '(0)=0} 。因此该方程的解是描述恒星压力和密度与半径的关系,并且给定的多方指数 n {\displaystyle n} 也是多方球的多方指数 n {\displaystyle n} 。流体静力平衡与势能、密度、压力梯度有关;泊松方程与势能、密度有关。

在物理学上,流体静力平衡与势能梯度、密度和压力梯度相关,而泊松方程则可以是势能和密度的关系式。因此如果有一个方程可以进一步指出压力和密度如何互相反映,就可以得到一个解。以上多方气体的特定选项在数学上陈述了这个问题,尤其是该陈述特别简洁并推导出了莱恩-埃姆登方程。这个方程对于恒星等自引力势能气体球是相当有用的近似,但它的假设通常是受到限制。

考虑到自引力势能、流体静力平衡下的球对称流体、质量守恒这些状况,就可使用以下连续性方程:

这里 ρ {\displaystyle \rho } r {\displaystyle r} 的函数。流体静力平衡的公式成为:

m {\displaystyle m} 也是 r {\displaystyle r} 的公式。再一次求导数可得:

这里已经使用一个连续性方程取代质量梯度。再将方程两侧乘上 r 2 {\displaystyle r^{2}} ,并将带有 P {\displaystyle P} 的导数的项置于左侧,方程成为:

方程两侧除以 r 2 {\displaystyle r^{2}} ,在某些意义上这是一维形式所需的方程。此外,如果我们以多变方程 P = K ρ c 1 + 1 n θ n + 1 {\displaystyle P=K\rho _{c}^{1+{\frac {1}{n}}}\theta ^{n+1}} ρ = ρ c θ n {\displaystyle \rho =\rho _{c}\theta ^{n}} 代入,可得到:

将常数聚集并以 r = α ξ {\displaystyle r=\alpha \xi } 取代:

最后得到莱恩-埃姆登方程:

同样地,也可以使用泊松方程进行推导:

我们可以透过以下数学公式以流体静力平衡取代势能梯度:

最后也可以得到莱恩-埃姆登方程。

n {\displaystyle n} 只在3个值时有解析解

如果 n = 0 {\displaystyle n=0} ,方程成为:

重新整理并进行一次积分后的公式成为:

公式两侧都除以 ξ 2 {\displaystyle \xi ^{2}} ,并且再积分一次后得到:

边界条件 θ ( 0 ) = 1 {\displaystyle \theta (0)=1} θ ( 0 ) = 0 {\displaystyle \theta '(0)=0} 暗示积分常数是 C 0 = 1 {\displaystyle C_{0}=1} C 1 = 0 {\displaystyle C_{1}=0}

n = 1 {\displaystyle n=1} ,方程可展开如下:

两端都乘以 ξ 2 {\displaystyle \xi ^{2}} 可得到 k = 1 {\displaystyle k=1} n = 0 {\displaystyle n=0} 的球贝索函数。套用了边界条件以后的解将是:

在经过一连串取代的步骤后,方程可以有进一步的解:

n = 5 {\displaystyle n=5} ,方程的解将是循着径向的无限大值。

一般情形下莱恩-埃姆登方程的解必须以数值积分方式求得。许多数值积分的标准解法要求该问题必须以一阶常微分方程表示,例如:

在这里 ϕ ( ξ ) {\displaystyle \phi (\xi )} 被视为无量纲质量,而质量可使用 m ( r ) = 4 π α 3 ρ c ϕ ( ξ ) {\displaystyle m(r)=4\pi \alpha ^{3}\rho _{c}\phi (\xi )} 表示。相关的边界条件是 ϕ ( 0 ) = 0 {\displaystyle \phi (0)=0} θ ( 0 ) = 1 {\displaystyle \theta (0)=1} 。第一个方程表现了流体静力平衡,而第二个方程则表示质量守恒。

已知如果 θ ( ξ ) {\displaystyle \theta (\xi )} 是莱恩-埃姆登方程的解,那么完整的解方程将是 C 2 / n + 1 θ ( C ξ ) {\displaystyle C^{2/n+1}\theta (C\xi )} 。和这方式相关的解则称为“同调”,而转换的过程是同调性的。如果我们选择不变的变量达到同调性,就可以将莱恩-埃姆登方程降一阶计算。

而这类可选择的变量有多个,一个适当的选择是:

我们可以将相对于 ξ {\displaystyle \xi } 的变量的对数微分,得到:

最后,我们将以上两个方程相除以消去应变量 ξ {\displaystyle \xi } ,留下:

以上即为单一一阶方程。

同调性不变的方程可被视为自主对方程:

这些方程的解的形式可透过以下线性稳定性分析来决定。方程的临界点(当 d V / d log ξ = d U / d log ξ = 0 {\displaystyle dV/d\log \xi =dU/d\log \xi =0} )和雅可比矩阵的特征值、特征矢量如下表所示:

相关

  • 季风季风(又称季候风)是周期性的风,随着季节变化,并且盛行风向(40%以上风频)季节切变达120度以上(按照传统定义,非全球性季风定义)。主要发生在季风亚洲(东亚、东南亚、南亚地区)、西非几内
  • 幽门括约肌幽门(pylorus)是胃和十二指肠的连接口,包含幽门窦(pyloric antrum)和幽门管(pyloric canal)两个部分。幽门括约肌(pyloric sphincter)在幽门管末端,可以控制食物从胃进入十二指肠的过
  • 硅谷硅谷(英语:Silicon Valley),是高科技事业云集的美国加州圣克拉拉谷(Santa Clara Valley)的别称,位于加利福尼亚州北部、旧金山湾区南部。硅谷的主要部分位于旧金山半岛南端的圣塔克
  • 玛丽埃塔玛丽埃塔(英语:Marietta)是位于美国佐治亚州的科布县中部的一个城市。根据2000年的 人口普查结果, 玛丽埃塔的总人口是58748。2008年, 玛丽埃塔的市长是Bill Dunaway.历史 |
  • 水历水历是水族特有的历法。现行水历与夏历大体一致,主要区别在于水历建戌,以夏历九月为岁首。水历起初是一种物候历(自然历)。水族先民通过观察气象变化、候鸟迁栖等自然现象来预测
  • 量子化学电脑程序量子化学软件,是计算化学中运用量子化学理论方法进行计算的软件。多数程序运用了哈特里-福克方法和一些后哈特里-福克方法(英语:Post-Hartree–Fock),及密度泛函理论、分子力学、半
  • 粒子侦测器粒子探测器(英语:Particle detector),是在物理实验、原子核物理学等领域用于探测、跟踪和鉴别高能粒子的一种物理实验设备。现代粒子探测器也用于测量放射粒子的能量、动量、旋
  • 二刻尺作图二刻尺(希腊语:νεῦσις、英语:neuein)是一种几何作图的工具,是上面有二个刻度的直尺(刻度可以在作图过程中标示),因此可以记录长度。二刻尺在古希腊时期曾经和圆规、(无刻度的)直
  • 天野正道天野正道(日语:天野 正道,1957年1月26日-)出生于日本秋田县秋田市,是一位日本作曲家、编曲家以及指挥家。他在东京国立音乐大学就读,1982年毕业,获得武冈赏。他的交响乐团作品充满着
  • 泉里香泉里香(日语:泉 里香/いずみ りか ,1988年10月11日-),本名‘泉里香’。日本的模特儿兼女演员。京都府出身。身高166cm,血型是A型。浜千咲、泉梨华及泉里果均为旧艺名。隶属于Stardu