斐波那契回调

✍ dations ◷ 2025-12-09 02:07:54 #技术分析

斐波那契回调(Fibonacci retracement)是一种技术分析方法,用于判断支持和阻力位,得名于斐波那契数列。斐波那契回调所根据的理论是,当价格向一个方向变动,其向相反方向的回调会在可预测的水平受阻,然后价格将会恢复原本的方向运行。

斐波那契回调的计算方法是,把上升或下降趋势的高位和低位之间的垂直距离,除以若干斐波那契比例,得出的数值是可能的支持或阻力位。0%是回调的开始,100%回调则表示价格完全收复早前的涨幅或跌幅。

黄金比率是源于神奇数字/菲波纳奇比率(Fibonnacci Number Sequence)。黄金比率是由十三世纪末出生的意大利著名数学家斐波那契(Leonardo Fibonacci)发现的,比率由一组神奇数字计算而成。这串神奇数列,是任何相列的两个数字之和都等于后一个数字。即:1,1,2,3,5,8,13,21,34,55,89,144……如此类推。即1+1=2,1+2=3,2+3=5,3+5=8等。

1202年,意大利数学家斐波那契出版了他的“算盘全书”。他在书中提出了一个关于兔子繁殖的问题: 如果一对兔子每月能生一对小兔(一雄一雌),而每对小兔在它出生后的第三个月里,又能开始生一对小兔,假定在不发生死亡的情况下,由一对出生的小兔开始,50个月后会有多少对兔子?

在第一个月时,只有一对小兔子,过了一个月,那对兔子成熟了,在第三个月时便生下一对小兔子,这时有两对兔子。再过多一个月,成熟的兔子再生一对小兔子,而另一对小兔子长大,有三对小兔子。由此可知,从第一个月开始以后每个月的兔子总数是: 1,1,2,3,5,8,13,21,34,55,89,144,233…若把上述数列继续写下去,得到的数列便称为斐波那契数列。数列中每个数便是前两个数之和,而数列的最初两个数都是1。若设 F0=1, F1=1, F2=2, F3=3, F4=5, F5=8, F6=13… 则:当n>1时,Fn+2 = Fn+1 + Fn,而 F0=F1=1。下面斐波那契数列的式子:

于是费波那契Leonardo Fibonacci) 现的一连串的数位,它们是 0、1、1、2、3、5、8、13、21、34、55、89、144、610、754…等,每个接连的数字都是由前两个数字相加而成的。该数列最吸引人之处在于随数列向无穷大发展数列中始终存在一常数:你会发现两个相邻数字间的比率总是约为1.618。例如,用后一个数位除去前一个数位时,所得出的答案大约等于0.618。(21/34 = 0.617647),与黄金比率有关。如将144除以89,即得出1.618。因此我们就知道1.618是非常重要。

斐波那契比例从斐波那契数列得出,一般采用0%、23.6%、38.2%、50%、61.8%和100%。

0.618的比例是由斐波那契数列中的任何一个数除以其之后的第1个数得出,例如8除以13和55除以89都约为0.618。

0.382的比例是由斐波那契数列中的任何一个数除以其之后的第2个数得出。

0.236的比例是由斐波那契数列中的任何一个数除以其之后的第3个数得出。

0%的比例则为:

1减去0.236得出0.764的比例。

0.786的计算方法:

0.500的比例由1(斐波那契数列的第3个数)除以2(斐波那契数列的第4个数)得出。

黄金比率导论

相关

  • 脱臼脱臼是指骨头末端因跌倒或骨头受撞击等外力影响而脱离关节的位置,常发生在臀部、肩膀(肩脱臼)、肘部、指头和膝盖(膝关节脱位)。意外脱臼时须将患处以夹板或吊带等物固定,不可贸然
  • 果子狸Gulo larvara Hamilton-Smith, 1827果子狸(学名:Paguma larvata)又名花面狸、白鼻心、果子猫(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemF
  • 甲醇甲醇(英语:Methanol,或Methyl alcohol;分子式:CH3OH或MeOH)又称羟基甲烷、木醇(wood alcohol)与木精(wood spirits),是一种有机化合物,为最简单的醇类。甲醇有“木醇”与“木精”之名,源
  • 美国公共卫生局美国公共卫生局(英语:United States Public Health Service)于1798年建立,当美国卫生、教育及福利部在1979年分拆为卫生公共服务部、教育部两部门后,该机构成为美国卫服部的主要
  • 美丽萝赛塔《美丽萝赛塔》(法语:Rosetta)是1999年由比利时导演尚-皮耶·达顿与卢·达顿执导的电影,本片在戛纳影展获得最佳女演员奖(爱蜜丽·德奎恩)与最大奖金棕榈奖,并促使比利时政府立法禁
  • 罗杰·费德勒罗杰·费德勒(德语:Roger Federer,德语:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gen
  • 207207国道(或“国道207线”、“G207线”)是在中国的一条国道,起点为内蒙古乌兰浩特,终点为广东徐闻县海安镇,全程3738千米。这条国道经过内蒙古、河北、山西、河南、湖北、湖南、广
  • 森林省森林省(法语:Département des Forêts;德语:Departement der Wälder;卢森堡语:Departement Forêts),或音译作福雷省,是法国第一共和国及后来法兰西第一帝国的一个省份,位于今德国、
  • 阿纳托利·彼得罗维奇·亚历山德罗夫阿纳托利·彼得罗维奇·亚历山德罗夫(俄语:Анатолий Петрович Александров,转写:Anatoly Petrovich Alexandrov,1903年2月13日-1994年)是苏联/俄罗斯物
  • 加拿大联邦化加拿大联邦化(英语:Canadian Confederation,法语:Confédération canadienne)是指联邦制的加拿大自治领最终在1867年7月1日建立的过程。当日三个英国殖民地成为新自治领的四个省