在数论中,莱兰数是可以表示成 的整数,其中 和 是大于 的整数,以数学家保罗·莱兰(英语:Paul Leyland)为名。前几个莱兰数是:
8,17,32,54,57,100,145,177,320, 368,512,593,945,1124 (OEIS中的数列A076980)。
和 都大于 的要求很重要。如果没有这个要求,每个正整数都可写成 而成为莱兰数。而由于加法的交换律,通常也会加上 这个条件,以免重复列入同一数字。
莱兰质数是指同时是莱兰数也质数的整数。前几个这样的质数是:
17,593,32993,2097593,8589935681,59604644783353249,523347633027360537213687137,43143988327398957279342419750374600193,... (OEIS中的数列A094133)
第二类莱兰数 是指可以写成 的整数,其中其中 和 是大于 的整数。
第二种莱兰质数,是指同时是第二种莱兰数也是质数的整数。前几个这样的质数是:
7,17,79,431,58049,130783,162287,523927,2486784401,6102977801,8375575711,13055867207,83695120256591,375700268413577,2251799813682647,... (OEIS中的数列A123206)
其他可能的第二种莱兰质数,请见由Henri Lifchitz和Renaud Lifchitz建立的PRP Top Records中搜寻。