正二十面体

✍ dations ◷ 2024-11-05 12:22:18 #正二十面体
正二十面体是一种正多面体,由20个正三角形组成。同时,它也是柏拉图立体、三角面多面体以及康威多面体。正二十面体是所有五种正多面体面数最多的。正二十面体有20个面、30个边和12个顶点,其对偶是正十二面体。它的顶点布局(英语:Vertex_configuration)为3.3.3.3.3或35,在施莱夫利符号中可用{3,5}来表示。在平面上,正多边形内接到圆时,边数越多,占圆面积的百分比就越高;而在三维空间中,这个规则却不可推广——当正十二面体和正二十面体内接到一个球时,前者约占66.4909%,后者仅占60.5461%。若有一个边长为a的正二十面体,则它的外接球(同时过该正二十面体所有顶点的球)的半径为:则有内切球(同时和该正二十面体所有面相切的球)的半径为:另外,若有一个球同时过该正二十面体所有边的中点,那它的半径为:其中φ (也称作τ)为黄金比例。若用A表示表面积、V表示体积,而a是正二十面体的边长,则有:后者.mw-parser-output .serif{font-family:Times,serif}F=20约为正四面体的20倍,因为20面体以外接球球心为中心可以切割出20个四面体,其中的四面体的体积是底面积的三分之一倍,ri是高的 √3a2/4倍。的外接球体的体积填充率是:在直角坐标系中,一个边长为二、重心在圆点的正二十面体的坐标分别为:其中φ = 1 + √5/2是黄金比例(或记为τ)。值得注意的是,这些顶点能共同形成五组,每组拥有三个同心、相互垂直的黄金矩形,其边形成博罗梅安环(英语:Borromean rings),其中,前者是因为正二十面体与黄金比例有密切的关系。 如果原始的二十面体的边长为1,那么它的对偶——正十二面体的边长就是√5 − 1/2,正好是一个黄金比例。12条边的一个正八面体可以被细分在黄金比例,使所得到的顶点可构成一个正二十面体。这首先要使沿着八面体边的向量连成一个有界的环,再沿着向量的方向以黄金比例作分割。正二十面体是一个D5d二面体对称对称的一个双五角锥反角柱,且顶点可以定义在球面坐标系上,其中两个顶点在球的两极,其余在纬度±arctan(1/2)的位置。可以发现剩余的10顶点属于反棱柱对称,从一个定点,经度每36°做一次极轴与赤道镜射,直到回到原始点。若以正二十面体的中心为原点,各顶点的坐标分别为{(0,±1,±Φ), (±1,±Φ,0), (±Φ,0,±1)},在此Φ = √5 − 1/2,即黄金分割数。因此,这些顶点能共同形成五组,每组拥有三个同心、相互垂直的黄金矩形。正二十面体有3种特殊的正交投影,分别正对着一个面、一条棱、一个顶点。见这些二维考克斯特平面(英语:Coxeter plane)正交投影,中间投影后重合的两个顶点给出了这个图像中的第三根轴以下构建正二十面体的方法避免了使用更基础的方法时必要的在数域 Q [ 5 ] {displaystyle mathbb {Q} } 中的复杂计算。 正二十面体的存在性依赖于 R 3 {displaystyle mathbb {R} ^{3}} 中6条等夹角线的存在性。事实上,我们很容易便可以发现,这样一组等夹角线与欧几里得空间中的球心在等夹角线所共的交点的球相交,得出的交点即是一个正二十面体的12个顶点。从相反方向考虑,假设这里存在一个正二十面体,它的6对相对顶点的连线(对角线)就形成了那样一个等夹角线系统。 为了构建这样一个等夹角线系统,我们开始于一个6×6方形矩阵。通过直接的计算,我们可以得出A2=5I(在这里I是6×6单位矩阵)。这表明矩阵I的特征值是√5和-√5,并且它们的复杂性都是3,因为A是对称的,并且它的迹是0。 矩阵 A + 5 I {displaystyle scriptstyle A+{sqrt {5}}I} 在商空间 R 6 / ker ⁡ ( A + 5 I ) {displaystyle mathbb {R} ^{6}/ker(A+{sqrt {5}}I)} 中引出了一个同构于 R 3 {displaystyle mathbb {R} ^{3}} 的欧几里得结构因为它的核 ker ⁡ ( A + 5 I ) {displaystyle ker(A+{sqrt {5}}I)} 是三维的。在 R 6 {displaystyle mathbb {R} ^{6}} 中,它的六条坐标轴线 R v 1 , … , R v 6 {displaystyle mathbb {R} v_{1},dots ,mathbb {R} v_{6}} 在投影 π : R 6 ⟶ R 6 / ker ⁡ ( A + 5 I ) {displaystyle pi :mathbb {R} ^{6}longrightarrow mathbb {R} ^{6}/ker(A+{sqrt {5}}I)} 下的图像形成了这样一个在 R 3 {displaystyle mathbb {R} ^{3}} 中由六条等夹角线组成的系统,它们都相交于一点,两两之间都夹着锐角 arccos 1 5 {displaystyle scriptstyle {arccos }{tfrac {1}{sqrt {5}}}} 。±v1,...,±v6向A的√5-特征空间的正交投影形成了正二十面体的12个顶点。 正二十面体另一个直接的构造用到了交错群A5的群表示论方法,它直接利用了正二十面体的等距同构。作为正多面体之一,正二十面体拥有较高的对称性,它的所有面在几何上都是相同的,不可区分的。可是我们也可以想象将正二十面体的面“涂上”不同的“颜色”,使它其的不同面拥有不同的“几何意义”,使其拥有不同的次级对称性。正二十面体有三种不同的半正涂色方法,可以按照一个顶点引出的5个面的涂色来标记为11213、11212、11111。正二十面体可以被描述为扭棱(英语:Snub (Geometry))正四面体,具有手征性正四面体对称性(英语:tetrahedral symmetry);它亦可以被描述成交错截顶正八面体,有五角十二面体对称性(英语:pyritohedral symmetry)。这个具有五角十二面体对称的正二十面体也被叫做伪二十面体是五角十二面体的对偶。正二十面体是正二十面体家族的一员:作为扭棱正四面体和交错截顶正八面体,正二十面体也是正四面体家族和正八面体家族的一员:正二十面体在拓扑上与其它一系列的正三角形镶嵌{3,n}和一系列的五阶正镶嵌{n,5}相关联:正二十面体和三个星形正多面体有着相同的顶点排布。其中与大十二面体还有相同的棱排布:虽然由于正二十面体的二面角太大(约138.189685°>120°),因此正二十面体不可能密铺三维欧几里得空间,但它可以密铺适当的双曲空间,称为三阶正二十面体堆砌(英语:Icosahedral honeycomb),每条棱处有三个正二十面体相交,每个顶点处有12个正二十面体相交,应此顶点图是正十二面体,施莱夫利符号{3,5,3},是四个三维双曲空间中的正堆砌之一。由于正二十面体非常均匀,且有20个面,因此适合作成骰子。某些病毒,如疱疹病毒科、诺罗病毒,拥有正二十面体的衣壳。在有些细菌中还发现一些具有二十面体形状的各种细菌的胞器,还有二十面体的壳包住的酶使不稳定的活化复合体得以建构BMC等不同类型的蛋白质。1904年,恩斯特·海克尔发表了一些放射虫的种类,包括Circogonia二十面体(Circogonia icosahedra),其骨架的形状像一个正二十面体。

相关

  • 心脏衰竭心脏衰竭(法语:Insuffisance cardiaque,英语:HF, heart failure),一般意指慢性心脏衰竭(英语:CHF, chronic heart failure)。但是有时则指郁血性心力衰竭(congestive heart failure),当
  • 心电图心电图(Electrocardiography、ECG 或者 EKG)是一种经胸腔的以时间为单位记录心脏的电生理活动,并通过皮肤上的电极捕捉并记录下来的诊疗技术。这是一种无创性的记录方式。Elect
  • 肾病肾病变、肾脏病(英语:Nephropathy、kidney disease、renal disease),又称肾损伤,指肾脏的疾病或是功能损伤。又分成非发炎性的肾病(英语:Nephrosis),以及发炎性的肾炎(英语:Nephritis)。
  • 鼻炎鼻炎(rhinitis)是医学术语,用于描述鼻腔中的一些区域受到刺激而产生的炎症。鼻炎典型的病征通常表现为流鼻涕。鼻炎是由于急性或慢性的鼻粘膜如病毒、病菌感染,或刺激物作用下受
  • 过敏性鼻炎过敏性鼻炎,又称为鼻敏感、干草热、花粉热、花粉症或季节性过敏性鼻炎,是因为免疫系统受到空气中的过敏原影响而导致的鼻炎症状。征兆和病症包括流鼻涕或鼻塞、打喷嚏、眼睛的
  • 颈部颈(neck),又称脖子,是身体的一部分,通常指在生物中,身体连接头和躯干之间的那一部分。假如颈部被折断,该生物便会死亡。颈头钮 别称-颈喉钮 通常别人称恤衫最顶的那一钮叫颈头钮人
  • 肾上腺素肾上腺素(Epinephrine或Adrenaline), 3,4-三羟基-N-甲基苯乙胺。是肾上腺髓质分泌的激素及神经传导物质,也是一种药物。肾上腺素被应用于治疗多项疾病,包含全身性过敏反应、心搏
  • 诊断诊断,在医学意义上指对人体生理或精神疾病及其病理原因所作的判断。作出这种判断一般需要的的资料有:医生等专业人员根据症状、病史(包括家庭病史)、病历及医疗检查结果等。其概
  • 鞭毛鞭毛是很多单细胞生物和一些多细胞生物细胞表面像鞭子一样的细胞器,用于运动及其它一些功能。在三个域中,鞭毛的结构各不相同。细菌的鞭毛是螺旋状的纤维,像螺丝一样旋转,属于生
  • 糖萼糖萼(也称为细胞外基质)是糖蛋白和糖脂覆盖物,其围绕在一些细菌,上皮细胞和其他细胞的细胞膜上。大多数动物上皮细胞在其质膜的外表面上具有类似绒毛的涂层。 该涂层由几种膜糖