差分方程

✍ dations ◷ 2025-06-27 14:32:13 #差分方程
在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程:序列的每一项目是定义为前一项的函数。像户口调查映射(logistic map)即为递推关系某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。所谓解一个递推关系式,也就是求其解析解,即关于n的非递归函数。线性字眼的意思是序列的每一项目是被定义为前一项的一种线性函数。系数和常数可能视n而定,甚至是非线性地。一种特别的情况是当系数并不依照n而定。齐次意思为关系的常数项为零。为了要得到线性递归唯一的解,必须有一些起始条件,就是序列的第一个数字无法依照该序列的其他数字而定时,且必须设定为某些数值。递推关系式的解通常是由系统的方法中找出来,通常借由使用生成函数(形式幂级数)或借由观察rn是一种对r的特定数值之解的事实。二阶递推关系式的形式:我们拥有解为rn:两边除以 r n − 2 {displaystyle r^{n-2}} 我们可以得到:这就是递推关系式的特征方程。解出r可获得两个根(roots) λ 1 , λ 2 {displaystyle lambda _{1},lambda _{2}} ,且如果两个根是不同的,我们可得到解为而如果两个根是相同的(当A2+4B=0),我们得到C和D都是常数。换句话说,将这种 a n = A a n − 1 + B {displaystyle a_{n}=Aa_{n-1}+B} 形式的方程,用2代入n后,就得到上述的 r 2 = A r + B {displaystyle r^{2}=Ar+B} 。常数"C"和"D"可以从"边界条件(side conditions)"中得到,通常会像是“已知 a 0 = c 1 {displaystyle a_{0}=c_{1}} , a 1 = c 2 {displaystyle a_{1}=c_{2}} ”。斐波那契数是使用一种线性递推关系式来定义:设若: F n / F n − 1 {displaystyle F_{n}/F_{n-1},} 当n趋于无限大之极限值存在,则其值为 1 + 5 2 {displaystyle 1+{sqrt {5}} over 2,} = Φ {displaystyle =Phi } 恰为黄金分割值,1.618....,另一值则为0.618....,两值互为倒数,也就是说1.618....分之1=0.618....,反之亦然。起始条件为:因此,斐波那契数的序列为:对于常系数非齐次线性递推关系,我们可以用待定系数法(英语:Method of undetermined coefficients)来求出它的一个特解,而它的通解就是这个特解与对应的齐次递推关系的通解的和。也可以使用迭代法求解,但只能得到确切的数值解,不能直接以解析式作答,该方法可利用计算机求解。一般情况下,常系数线性差分方程可以写作:则对应的齐次方程形式为:则特征方程为:当特征根非重根时,齐次解为:当特征根为重根时,若 α 1 {displaystyle alpha _{1}} 为特征方程的 K {displaystyle K} 重根,齐次解为:特解 y p ( n ) = D ( n ) {displaystyle y_{p}(n)=D(n)} 的形式由激励函数 x ( n ) {displaystyle x(n)} 的形式决定。一般情况,当激励函数x(n)代入方程。方程右方出现 n k {displaystyle n^{k}} 的形式,则特解选择当方程右方出现 a n {displaystyle a^{n}} 的形式,则特解选择当a不是特征根时当a是特征根时当a为r重根时将特解带入原方程,求出待定系数。根据边界条件,可求出齐次节待定系数。我们用待定系数法来解以下的常系数非齐次线性递推关系:对应的齐次递推关系的齐次解是:我们猜测特解的形式为:代入原递推关系中,我们便得到:比较等式两端的 3 n {displaystyle 3^{n}} 项的系数,可得:比较等式两端的 n {displaystyle n} 项的系数,可得:比较等式两端的常数项,可得:因此原递推关系的通解为:数值求解常微分方程时,经常会遇到递归关系。例如,求解如下初值问题时如采用欧拉法和步长h,可以通过如下递归关系计算 y 0 = y ( t 0 ) {displaystyle y_{0}=y(t_{0})} , y 1 = y ( t 0 + h ) , {displaystyle y_{1}=y(t_{0}+h),} y 2 = y ( t 0 + 2 h ) , . . . {displaystyle y_{2}=y(t_{0}+2h),...}线性一阶微分方程组可以用离散化条目中介绍的方法解析地精确离散化。

相关

  • 转录因子在分子生物学中,转录因子(英语:Transcription factor)是指能够结合在某基因上游特异核苷酸序列上的蛋白质,这些蛋白质能调控其基因的转录。方法是转录因子可以调控核糖核酸聚合酶
  • 无菌性脑膜炎脑膜炎(英语:meningitis)指发生于脑膜的急性炎症,脑膜是包裹大脑和脊髓的保护薄膜。脑膜炎最常见的症状是发热、头痛和颈部僵硬。其他症状还包含精神错乱(英语:mental confusion)或
  • 福利经济学福利经济学(英语:welfare economics)是对经济体系的规范性分析,即经济运行中什么是“对”、什么是“错”等问题的研究。福利经济学在简单的自利人性的假设下,设定评价人类行为效
  • SFR钠冷快中子反应堆(英语:Sodium-cooled Fast Reactor,缩写:SFR),是一种快中子增殖反应堆,以液态钠做为冷却剂。位于美国爱达荷州、全世界第一座可发电的反应堆EBR-I即使用液态钠钾合
  • 奥斯曼土耳其人奥斯曼土耳其人是奥斯曼帝国穆斯林米利特的分支,以往主导著奥斯曼帝国的统治阶层。与奥斯曼人早期历史的可靠资料缺乏。据一些资料所述,突厥乌古斯人的卡耶部落首领埃尔图鲁尔
  • 妄想性障碍妄想症(英语:Delusional disorder),又称妄想性障碍,是一种精神病学诊断,指“抱有一个或多个怪诞性的妄想,同时不存在任何其他精神病症状”。对于妄想症的概念,曾使用偏执狂一词。现
  • 支气管扩张症支气管扩张(英语:Bronchiectasis)指的是肺脏中支气管永久性的扩张。患者的常见症状包括有痰的慢性咳嗽,其他还有呼吸困难、咳血与胸痛等,有些患者同时也有喘鸣与杵状指(英语:nail c
  • Wiktionary维基词典(英语:Wiktionary),是维基百科的姊妹工程,它的目标是创建一个基于所有语言的自由的词典。该项目于2002年12月12日启动,发起人是维基人Daniel Alston。维基词典旨在收录字
  • 粗衬线体在字体排印学中,粗衬线体(或称埃及体)是一种衬线字体,其衬线是更粗、块状的。 衬线终端可以是钝头和棱角(Rockwell),或圆角(Courier)。粗衬线体发明于十九世纪,在十九世纪也最为流行。
  • 地理学地理学是关于地球及其特征、居民和现象的学问。它是研究地球表层各圈层相互作用关系,及其空间差异与变化过程的学科体系。地理学家在传统上被视为和地图学家同一类,认为两者都