差分方程

✍ dations ◷ 2025-01-23 03:02:54 #差分方程
在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程:序列的每一项目是定义为前一项的函数。像户口调查映射(logistic map)即为递推关系某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。所谓解一个递推关系式,也就是求其解析解,即关于n的非递归函数。线性字眼的意思是序列的每一项目是被定义为前一项的一种线性函数。系数和常数可能视n而定,甚至是非线性地。一种特别的情况是当系数并不依照n而定。齐次意思为关系的常数项为零。为了要得到线性递归唯一的解,必须有一些起始条件,就是序列的第一个数字无法依照该序列的其他数字而定时,且必须设定为某些数值。递推关系式的解通常是由系统的方法中找出来,通常借由使用生成函数(形式幂级数)或借由观察rn是一种对r的特定数值之解的事实。二阶递推关系式的形式:我们拥有解为rn:两边除以 r n − 2 {displaystyle r^{n-2}} 我们可以得到:这就是递推关系式的特征方程。解出r可获得两个根(roots) λ 1 , λ 2 {displaystyle lambda _{1},lambda _{2}} ,且如果两个根是不同的,我们可得到解为而如果两个根是相同的(当A2+4B=0),我们得到C和D都是常数。换句话说,将这种 a n = A a n − 1 + B {displaystyle a_{n}=Aa_{n-1}+B} 形式的方程,用2代入n后,就得到上述的 r 2 = A r + B {displaystyle r^{2}=Ar+B} 。常数"C"和"D"可以从"边界条件(side conditions)"中得到,通常会像是“已知 a 0 = c 1 {displaystyle a_{0}=c_{1}} , a 1 = c 2 {displaystyle a_{1}=c_{2}} ”。斐波那契数是使用一种线性递推关系式来定义:设若: F n / F n − 1 {displaystyle F_{n}/F_{n-1},} 当n趋于无限大之极限值存在,则其值为 1 + 5 2 {displaystyle 1+{sqrt {5}} over 2,} = Φ {displaystyle =Phi } 恰为黄金分割值,1.618....,另一值则为0.618....,两值互为倒数,也就是说1.618....分之1=0.618....,反之亦然。起始条件为:因此,斐波那契数的序列为:对于常系数非齐次线性递推关系,我们可以用待定系数法(英语:Method of undetermined coefficients)来求出它的一个特解,而它的通解就是这个特解与对应的齐次递推关系的通解的和。也可以使用迭代法求解,但只能得到确切的数值解,不能直接以解析式作答,该方法可利用计算机求解。一般情况下,常系数线性差分方程可以写作:则对应的齐次方程形式为:则特征方程为:当特征根非重根时,齐次解为:当特征根为重根时,若 α 1 {displaystyle alpha _{1}} 为特征方程的 K {displaystyle K} 重根,齐次解为:特解 y p ( n ) = D ( n ) {displaystyle y_{p}(n)=D(n)} 的形式由激励函数 x ( n ) {displaystyle x(n)} 的形式决定。一般情况,当激励函数x(n)代入方程。方程右方出现 n k {displaystyle n^{k}} 的形式,则特解选择当方程右方出现 a n {displaystyle a^{n}} 的形式,则特解选择当a不是特征根时当a是特征根时当a为r重根时将特解带入原方程,求出待定系数。根据边界条件,可求出齐次节待定系数。我们用待定系数法来解以下的常系数非齐次线性递推关系:对应的齐次递推关系的齐次解是:我们猜测特解的形式为:代入原递推关系中,我们便得到:比较等式两端的 3 n {displaystyle 3^{n}} 项的系数,可得:比较等式两端的 n {displaystyle n} 项的系数,可得:比较等式两端的常数项,可得:因此原递推关系的通解为:数值求解常微分方程时,经常会遇到递归关系。例如,求解如下初值问题时如采用欧拉法和步长h,可以通过如下递归关系计算 y 0 = y ( t 0 ) {displaystyle y_{0}=y(t_{0})} , y 1 = y ( t 0 + h ) , {displaystyle y_{1}=y(t_{0}+h),} y 2 = y ( t 0 + 2 h ) , . . . {displaystyle y_{2}=y(t_{0}+2h),...}线性一阶微分方程组可以用离散化条目中介绍的方法解析地精确离散化。

相关

  • 生命演化历程生命演化历程纪录地球上生命发展过程中的主要事件。本条目中的时间表,是以科学证据为基础所做的估算。生物演化指生物的族群从一个世代到另一个世代之间,获得并传递新性状的过
  • 天体生物学天体生物学(英语:astrobiology),旧称外空生物学(xenobiology),是一门研究在宇宙中生命起源、生物演化、分布和未来发展的交叉学科,并不只限于地外生物,或包括对地球生物的研究。在天
  • 特发性血小板减少性紫癜特发性血小板减少性紫癜(英语:Idiopathic thrombocytopenic purpura,ITP)是因血小板免疫性破坏,导致外周血中血小板减少的出血性疾病。是最常见的血小板减少性紫癜,它是一种由复杂
  • 冬虫夏草Sphaeria sinensis Berkeley (1843) Cordyceps sinensis (Berk.) Sacc. (1878)冬虫夏草(学名:Ophiocordyceps sinensis,藏语:.mw-parser-output .uchen{font-family:"Qomolangma
  • 4-羟二异丙基色胺4-羟基-N,N-二异丙基色胺(英语:4-Hydroxy-di-isopropyl-tryptamine,4-HO-DiPT或Iprocin)是一种人工合成的致幻剂,与脱磷酸裸盖菇素结构相似,也是色胺的衍生物。4-HO-DiPT的效应与
  • 资源水资源包括经人类控制并直接可供灌溉、发电、给水、航运、养殖等用途的地表水和地下水,以及江河、湖泊、井、泉、潮汐、港湾和养殖水域等。水资源是发展国民经济不可缺少的重
  • 内酯内酯(英文:Lactone)即环状的酯,由一化合物中的羟基和羧基发生分子内缩合环化得到。内酯以五元(γ-内酯)及六元(δ-内酯)环内酯最为稳定,环内的角张力最小。4-羟基酸(R-CH(OH)-(CH2)2-C
  • 法尤姆省法尤姆省(阿拉伯语:محافظة الفيوم‎),是埃及的一个省,位于该国中部。首府法尤姆。面积1,827平方公里,人口2,512,792人(2006年统计)。
  • 化学药物治疗人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学化学疗法(英语:Chemotherapy),简称化疗(Che
  • 扑热息痛7.21 g/kg (0 °C) 8.21 g/kg (5 °C) 9.44 g/kg (10 °C) 10.97 g/kg (15 °C) 12.78 g/kg (20 °C) ~14 mg/mL (20 °C)对乙酰氨基酚(英语:Acetaminophen),又称