首页 >
差分方程
✍ dations ◷ 2025-07-11 07:05:22 #差分方程
在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程:序列的每一项目是定义为前一项的函数。像户口调查映射(logistic map)即为递推关系某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。所谓解一个递推关系式,也就是求其解析解,即关于n的非递归函数。线性字眼的意思是序列的每一项目是被定义为前一项的一种线性函数。系数和常数可能视n而定,甚至是非线性地。一种特别的情况是当系数并不依照n而定。齐次意思为关系的常数项为零。为了要得到线性递归唯一的解,必须有一些起始条件,就是序列的第一个数字无法依照该序列的其他数字而定时,且必须设定为某些数值。递推关系式的解通常是由系统的方法中找出来,通常借由使用生成函数(形式幂级数)或借由观察rn是一种对r的特定数值之解的事实。二阶递推关系式的形式:我们拥有解为rn:两边除以
r
n
−
2
{displaystyle r^{n-2}}
我们可以得到:这就是递推关系式的特征方程。解出r可获得两个根(roots)
λ
1
,
λ
2
{displaystyle lambda _{1},lambda _{2}}
,且如果两个根是不同的,我们可得到解为而如果两个根是相同的(当A2+4B=0),我们得到C和D都是常数。换句话说,将这种
a
n
=
A
a
n
−
1
+
B
{displaystyle a_{n}=Aa_{n-1}+B}
形式的方程,用2代入n后,就得到上述的
r
2
=
A
r
+
B
{displaystyle r^{2}=Ar+B}
。常数"C"和"D"可以从"边界条件(side conditions)"中得到,通常会像是“已知
a
0
=
c
1
{displaystyle a_{0}=c_{1}}
,
a
1
=
c
2
{displaystyle a_{1}=c_{2}}
”。斐波那契数是使用一种线性递推关系式来定义:设若:
F
n
/
F
n
−
1
{displaystyle F_{n}/F_{n-1},}
当n趋于无限大之极限值存在,则其值为
1
+
5
2
{displaystyle 1+{sqrt {5}} over 2,}
=
Φ
{displaystyle =Phi }
恰为黄金分割值,1.618....,另一值则为0.618....,两值互为倒数,也就是说1.618....分之1=0.618....,反之亦然。起始条件为:因此,斐波那契数的序列为:对于常系数非齐次线性递推关系,我们可以用待定系数法(英语:Method of undetermined coefficients)来求出它的一个特解,而它的通解就是这个特解与对应的齐次递推关系的通解的和。也可以使用迭代法求解,但只能得到确切的数值解,不能直接以解析式作答,该方法可利用计算机求解。一般情况下,常系数线性差分方程可以写作:则对应的齐次方程形式为:则特征方程为:当特征根非重根时,齐次解为:当特征根为重根时,若
α
1
{displaystyle alpha _{1}}
为特征方程的
K
{displaystyle K}
重根,齐次解为:特解
y
p
(
n
)
=
D
(
n
)
{displaystyle y_{p}(n)=D(n)}
的形式由激励函数
x
(
n
)
{displaystyle x(n)}
的形式决定。一般情况,当激励函数x(n)代入方程。方程右方出现
n
k
{displaystyle n^{k}}
的形式,则特解选择当方程右方出现
a
n
{displaystyle a^{n}}
的形式,则特解选择当a不是特征根时当a是特征根时当a为r重根时将特解带入原方程,求出待定系数。根据边界条件,可求出齐次节待定系数。我们用待定系数法来解以下的常系数非齐次线性递推关系:对应的齐次递推关系的齐次解是:我们猜测特解的形式为:代入原递推关系中,我们便得到:比较等式两端的
3
n
{displaystyle 3^{n}}
项的系数,可得:比较等式两端的
n
{displaystyle n}
项的系数,可得:比较等式两端的常数项,可得:因此原递推关系的通解为:数值求解常微分方程时,经常会遇到递归关系。例如,求解如下初值问题时如采用欧拉法和步长h,可以通过如下递归关系计算
y
0
=
y
(
t
0
)
{displaystyle y_{0}=y(t_{0})}
,
y
1
=
y
(
t
0
+
h
)
,
{displaystyle y_{1}=y(t_{0}+h),}
y
2
=
y
(
t
0
+
2
h
)
,
.
.
.
{displaystyle y_{2}=y(t_{0}+2h),...}线性一阶微分方程组可以用离散化条目中介绍的方法解析地精确离散化。
相关
- UprifosbuvirUprifosbuvir(MK-3682)是一种开发用于治疗丙型肝炎的抗病毒药物。它是一种核苷酸类似物,可用作NS5B RNA聚合酶抑制剂,目前处于III期人体临床试验中。
- 活性物质原料药(英文:API, Active Pharmaceutical Ingredients),又称活性药物成分,由化学合成、植物提取或者生物技术所制备,但病人无法直接服用的物质,一般再经过添加辅料、加工,制成可直接
- 蓝婴症青紫婴儿(blue baby),或称为发绀婴儿、蓝婴,是指婴儿因先天性心脏缺损或后天性缺氧,血含氧量较正常人低,造成发绀现象。因患儿身体呈蓝紫色而得名。青紫型先天性心脏病包括:Templat
- 麻腮风三联疫苗麻腮风三联疫苗(英语:Measles mumps and rubella vaccine, MMR),港澳台译为麻疹腮腺炎德国麻疹混合疫苗,,大陆简称麻腮风疫苗,是预防麻疹、腮腺炎、风疹(德国麻疹)的疫苗,由三种疾病病
- 季铵盐季铵盐,又称四级铵盐是铵离子的四个氢离子都被烃基取代后形成的季铵阳离子的盐,具有通式 R4N+X−。其中四个烃基可以相同,也可以不相同,X−多为卤素阴离子,HSO4−,RCOO−及OH−(季
- 鸟类鸟是鸟纲(学名:Aves)动物的通称,是唯一存活至今的恐龙,现代所有鸟类在生物学上也被分类为鸟形恐龙(即鸟翼类)的一部分;鸟纲的全体成员均为两足、恒温、卵生、身披羽毛且色彩鲜艳各异
- 大雁大雁可以指:
- 华中科技大学武汉中心医院武汉市中心医院,是中华人民共和国一家综合性三级甲等医院,始建于1880年,其前身为汉口天主堂医院。主院区南京路院区位于湖北省武汉市江岸区,另外在江汉区设有后湖院区,以及谌家矶
- 中华字海《中华字海》曾是收录汉字最多的大型字书(后被收字106230的中华民国教育部《异体字字典》取代)。由冷玉龙、韦一心主编。中华书局、中国友谊出版社1994年出版。《中华字海》收
- 儿童心理学异常心理学 行为遗传学 生物心理学 心理药物学 认知心理学 比较心理学 跨文化心理学 文化心理学 差异心理学(英语:Differential psychology) 发展心理学 演化心理学 实验心理学