首页 >
差分方程
✍ dations ◷ 2025-09-11 04:15:41 #差分方程
在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程:序列的每一项目是定义为前一项的函数。像户口调查映射(logistic map)即为递推关系某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。所谓解一个递推关系式,也就是求其解析解,即关于n的非递归函数。线性字眼的意思是序列的每一项目是被定义为前一项的一种线性函数。系数和常数可能视n而定,甚至是非线性地。一种特别的情况是当系数并不依照n而定。齐次意思为关系的常数项为零。为了要得到线性递归唯一的解,必须有一些起始条件,就是序列的第一个数字无法依照该序列的其他数字而定时,且必须设定为某些数值。递推关系式的解通常是由系统的方法中找出来,通常借由使用生成函数(形式幂级数)或借由观察rn是一种对r的特定数值之解的事实。二阶递推关系式的形式:我们拥有解为rn:两边除以
r
n
−
2
{displaystyle r^{n-2}}
我们可以得到:这就是递推关系式的特征方程。解出r可获得两个根(roots)
λ
1
,
λ
2
{displaystyle lambda _{1},lambda _{2}}
,且如果两个根是不同的,我们可得到解为而如果两个根是相同的(当A2+4B=0),我们得到C和D都是常数。换句话说,将这种
a
n
=
A
a
n
−
1
+
B
{displaystyle a_{n}=Aa_{n-1}+B}
形式的方程,用2代入n后,就得到上述的
r
2
=
A
r
+
B
{displaystyle r^{2}=Ar+B}
。常数"C"和"D"可以从"边界条件(side conditions)"中得到,通常会像是“已知
a
0
=
c
1
{displaystyle a_{0}=c_{1}}
,
a
1
=
c
2
{displaystyle a_{1}=c_{2}}
”。斐波那契数是使用一种线性递推关系式来定义:设若:
F
n
/
F
n
−
1
{displaystyle F_{n}/F_{n-1},}
当n趋于无限大之极限值存在,则其值为
1
+
5
2
{displaystyle 1+{sqrt {5}} over 2,}
=
Φ
{displaystyle =Phi }
恰为黄金分割值,1.618....,另一值则为0.618....,两值互为倒数,也就是说1.618....分之1=0.618....,反之亦然。起始条件为:因此,斐波那契数的序列为:对于常系数非齐次线性递推关系,我们可以用待定系数法(英语:Method of undetermined coefficients)来求出它的一个特解,而它的通解就是这个特解与对应的齐次递推关系的通解的和。也可以使用迭代法求解,但只能得到确切的数值解,不能直接以解析式作答,该方法可利用计算机求解。一般情况下,常系数线性差分方程可以写作:则对应的齐次方程形式为:则特征方程为:当特征根非重根时,齐次解为:当特征根为重根时,若
α
1
{displaystyle alpha _{1}}
为特征方程的
K
{displaystyle K}
重根,齐次解为:特解
y
p
(
n
)
=
D
(
n
)
{displaystyle y_{p}(n)=D(n)}
的形式由激励函数
x
(
n
)
{displaystyle x(n)}
的形式决定。一般情况,当激励函数x(n)代入方程。方程右方出现
n
k
{displaystyle n^{k}}
的形式,则特解选择当方程右方出现
a
n
{displaystyle a^{n}}
的形式,则特解选择当a不是特征根时当a是特征根时当a为r重根时将特解带入原方程,求出待定系数。根据边界条件,可求出齐次节待定系数。我们用待定系数法来解以下的常系数非齐次线性递推关系:对应的齐次递推关系的齐次解是:我们猜测特解的形式为:代入原递推关系中,我们便得到:比较等式两端的
3
n
{displaystyle 3^{n}}
项的系数,可得:比较等式两端的
n
{displaystyle n}
项的系数,可得:比较等式两端的常数项,可得:因此原递推关系的通解为:数值求解常微分方程时,经常会遇到递归关系。例如,求解如下初值问题时如采用欧拉法和步长h,可以通过如下递归关系计算
y
0
=
y
(
t
0
)
{displaystyle y_{0}=y(t_{0})}
,
y
1
=
y
(
t
0
+
h
)
,
{displaystyle y_{1}=y(t_{0}+h),}
y
2
=
y
(
t
0
+
2
h
)
,
.
.
.
{displaystyle y_{2}=y(t_{0}+2h),...}线性一阶微分方程组可以用离散化条目中介绍的方法解析地精确离散化。
相关
- American Thoracic Society美国胸腔学会(The American Thoracic Society,缩写: ATS),成立于1905年,是美国一个独立注册的、国际性、 以呼吸医学和重症监护医学医学为主的教育与科学组织。大约有18000学会成
- 脐带绕颈脐带绕颈(nuchal cord)是指胎儿在母体子宫内时,发生脐带缠绕在胎儿颈部的情形。脐带绕颈的胎儿出生后,可能很快就会出现脸色发黑、面部瘀青及眼白布有血丝(英语:subconjunctival b
- 平滑肌平滑肌,是非横纹肌的肌肉组织。在人体,平滑肌分布在动脉和静脉血管管壁、膀胱、子宫、男性和女性生殖道、消化道、呼吸道、眼睛的睫状肌(英语:Ciliary muscle)和虹膜。平滑肌与骨
- 血压计血压计是用于测量血压的医疗仪器。现在常见的血压计设计有水银柱式血压计、电子血压计和气压表式血压计(表型气压式血压计)三种。电子血压计除了能显示血压读数外,亦有提供脉搏
- β内酰胺酶结构 / ECODβ-内酰胺酶(β-lactamases),又称为盘尼西林酶(Penicillinase)、头孢菌素酶(Cephalosporinase),是一类由某些细菌生成来提供多重抗药性,对抗β-内酰胺类抗生素(比如青霉素
- 苯芴醇苯芴醇(Lumefantrine或benflumetol)是一种抗疟药,只会和蒿甲醚合并使用,称为复方蒿甲醚-苯芴醇(英语:Artemether/lumefantrine),有时也会用英文co-artemether表示。在1981年的青蒿素
- 西部非洲西非通常是指非洲大陆南北分界线和向西凸起部分的大片地区,为地理、人种和文化过渡地带。非洲大陆南大西洋海岸线在这一地区呈东西走向的部分曾以象牙海岸、黄金海岸而闻名。
- 雄甾酮雄酮 (英语:androsterone,3α-hydroxy-5α-androstan-17-one),也称为“雄甾酮”,是具有较低雄激素活性的类固醇荷尔蒙。雄酮是肝脏中制造的睾固酮代谢物, 它的3-β异构体是表雄酮,5-
- 模型在数学学科模型论中,语言 L {\displaystyle {\mathcal {L}}} 的结构
- 兽医产科学兽医产科学是兽医学的一个分支学科,主要研究动物的繁殖,包括生殖系统的生理及病理及兽医产科临床实践。