信号流图

✍ dations ◷ 2025-10-06 09:11:35 #流程管理,模拟,控制理论,图,信号处理,线性代数,建模语言

信号流图(Signal-flow graph)最早是由克劳德·香农所发明 ,但因为美国麻省理工学院的塞缪尔·杰斐逊·梅森(英语:Samuel Jefferson Mason)于20世纪50年代初提出这个词,因为也称梅森图(Mason graph),信号流图是特殊的流向图(英语:Flow graph (mathematics)),属于有向图(英语:Directed graph),其中的节点表示系统的变数,而连接两节点的边表示二个变数之间的函数关系。信号流图的理论是以有向图为基础,不过是应用有向图来表示系统,和有向图的原理差异较大。

信号流图最常用来表示物理系统和其控制器(网宇实体系统或控制系统)之间的关系,不过在许多电子电路、运算放大器电路、数位滤波器、状态变数滤波器及类比滤波器的分析中也会用到信号流图。在许多文献中,信号流图都可以转换为一组线性方程或是线性微分方程,而各组变数之间的增益则用边上的系数来表示,也有些信号流图会用特殊方式来表示非线性系统。而利用梅森增益公式可以找到输入和输出之间的关系。

以下是梅森提出信号流图的基本概念:

在基本信号流图中,节点的相依关系可以用指向此节点的箭头表示,节点会影响的其他节点可以用由节点射出的箭头表示,最常见的信号流图中,每一个节点若有指向此节点的箭头,此节点的值会和这些箭头另一端的节点有关,而且呈一函数关系,举例为。(a) 图表示各节点有以下的关系:

节点是独立节点,没有箭头指向此节点,节点和和其他节点的关系分别如图(b)和(c)。

信号流图会针对每一个节点定义一函数,处理其输入的变数。每个非独立节点都会依个别特定方式来处理输入信号,再将结果送到其他的节点“信号流图一开始是由梅森所定义,其中表示了许多的函数关系,可能线性,也可能非线性。”

信号流图中的变数可以自行依需要选定,系统本身有其方程式,但也可以根据其系统及架构来选择变数,绘制信号流图,复杂的系统可能会有多种选择变数的方式。同一个系统也可以用不同的信号流图来表示,系统和信号流图之间没有一对一的对应关系。

线性信号流图只针对线性非时变系统。在为系统建立模型时,第一步是找到确认系统行为的方程式,先不考虑因果关系(这称为acausal modeling),之后可以由方程式推出信号流图。

线性信号流图也是由节点及箭头组成,不过箭头上会有加权的系数。节点是线性方程组的变数,而加权的系数则是方程组中的系数,信号只会依节点的方向,由一个节点流到另一个节点。线性信号流图中只能表达信号和系数相乘,以及数个信号的相加,这已足以表示线性方程组。当一信号延著箭头一个节点到另一个节点时,此信号就乘以箭头上的系数,若几个箭头指到同一个节点时,这几个信号会相加(若需要相减,可以调整对应系数为负即可)。

针对用线性代数方程或是微分方程来表示的系统,线性信号流图在数学上等效于其方程式,看信号流图上各节点信号的来源以及箭头上的系数即可得到方程式。箭头上的系数多半会是实数或是某种参数组成的线性函数(例如拉氏转换的变数)。

线性信号流图是和以下形式线性系统有关的信号流图:

右图中有一些线性信号流图中的基本元件。

以下是一些线性信号流图中常见的术语:

有些研究者认为,线性信号流图的限制比方块图要多,信号流图严谨用有向图来表示线性代数方程。

有些研究者则认为为线性信号流图和线性方块图是描述一个系统的二个等效方式,用任何一个都可以找到系统的增益。

Bakshi及Bakshi提供了一个信号流图和方块图比较的列表,Kumar另外有一个列表。根据Barker等人的论点:

在右图中有一个回授系统的简单方块图,以及二个对应的信号流图。输入是输入信号的拉氏转换,是信号流图的源节点(没有输入边的节点),输出信号是输出变数的拉氏转换,表示为最终节点(没有输出边的节点),和为传递函数,可以提供调整后的输出信号给输入端,二个信号流图是等效的。

信号流图也可以用来分析系统,用来了解一个已有系统的模型,也可以用来合成,确认不同设计的特质。

在建构动态系统的模型时,以下是Dorf和Bishop列出的步骤:

在上述程中,物理系统的数学模型方程可以用来推导信号流图方程。

信号流图也用在设计空间探索(英语:SDesign Space Exploration)(DSE),一个趋近实际呈现的过渡表示方式。设计空间探索会在许多不同的选项中找一个适合的解。典型的分析流程会先针对待确认的系统,以其各元件的物理方程式来建模。设计空间探索不同,其设计合成的规格是想要的传递函数。例如,不同的策略会产生不同的信号流图,可由此推导出对应的实现方式。另一个使用有说明的信号流图的例子是连续时间行为的表示方式,作为架构生成器的输入。

香农公式(Shannon's formula)是计算类比电脑中互联放大器增益的解析表示法。在二次大战时,香农在探就类比电脑的功能运作时,发展了香农公式。因为战争期间的的限制,香农当时没有发表他的研究。塞缪尔·杰斐逊·梅森(英语:Samuel Jefferson Mason)在1952年重新发现了相同的公式。

哈普将香农公式扩展到在图形上封闭的系统。香农-哈普公式(Shannon-Happ formula)可以计算传递函数、灵敏度、误差函数等。

对于一致的单边线性方程,香农-哈普公式可以用直接替代的方式求解(非迭代法)。

NASA的电路计算软件NASAP就是以香农-哈普公式为基础。

图3是由渐近增益模型表示负反馈放大器的一种可能的信号流图,可以得到放大器增益的方程式为

其参数的说明如下: = 返回比, = 直变大器增益,direct amplifier gain, = 前馈(表示回授可能有的双向特性,也可能是刻意的前馈补偿)。

增益和的意思分别是时间接近零及无限大时的增益:

有许多可能的信号流图,对应不同的增益关系。图4是另一个信号流图,其渐近增益模型比较容易用电路表示。在此图中,参数β为回授因子,而为控制因子,和电路中的相依讯号源有关,配合信号流图,可以得到增益为

若要连接到渐近增益模型,参数和β不能是任意的电路参数,需要和返回比有以下的关系:

因此渐近增益为:

替换结果到增益表示式中,

上述就是渐近增益模型的公式。

梅森在导入线性信号流图的同时,也导入了非线性信号流图。梅森提到:“线性信号流图就是相关系统是线性的信号流图”"

若以xj来表示j节点的讯号,以下例子是不符合线性非时变系统的函数:

相关

  • 薯蓣科参见正文薯蓣科(学名:Dioscoreaceae)为单子叶植物薯蓣目的一科,包括8-9属约750种。薯蓣科植物是多年生草质缠绕藤本植物,有块状或根状的地下茎;茎平滑或有刺;叶互生或在上部对生,为
  • 火三角火三角是一个简单模型,能够让人知道一场火灾发生所需要的成分,也是消防经常会用到的概念。“火三角”阐明了一场火的燃烧之规律,只有齐备以下三种元素:引火源、可燃物及助燃剂(多
  • 磷青铜磷青铜是铜与锡、磷的合金,其中含有锡2%-8%,含有磷2-8%,其余成分为铜。坚硬,可制弹簧。铸件可用于齿轮、蜗轮、轴承等机械部件。
  • 楚氏弯颌象鼻鱼楚氏弯颌象鼻鱼,为辐鳍鱼纲骨舌鱼目象鼻鱼科的其中一种。分布于非洲刚果民主共和国及安哥拉的Kasai河与支流,栖息于水底,具有发电器官,用来侦测猎物,体长可达29.4公分。
  • 乔治·马得胜马得胜(英语:George Matheson,1842年3月27日-1906年8月28日)是一位苏格兰神学家和传教士。马得胜出生在格拉斯哥,是一个商人和 Jane Matheson (第二代表兄妹)的儿子,是8个孩子中最年
  • 氮化钛氮化钛,化学式TiN,是一种合成陶瓷材料,极坚硬,其硬度接近于金刚石。通常用作钛合金,钢,硬质合金和铝结构的涂层以改善表面性质。作为薄涂层,氮化钛用于硬化、保护切割和滑动表面,也
  • 吴廷魁吴廷魁(越南语:Ngô Ðình Khôi/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H",
  • 金亨锡金亨锡(韩语:김형석),韩国作曲家、音乐制作人,被视为韩国舞曲元祖。保留音源版权超过1,200首,也是制作费历代收入最高的作曲家(平均6亿韩圆)。2017年为《姐姐们的 Slam Dunk 2》打造
  • 夜·店《夜·店》原名超市,是中国于2009年上映的一部喜剧电影。由橙天娱乐、中国电影集团公司和东上海北京分公司共同出品。本片是导演杨庆的电影处女作,于2008年11月开机。 故事
  • HinaBitter♪《HinaBitter♪》(日语:ひなビタ♪)是KONAMI公司的虚拟偶像企划(正式名称:Web联动型音乐配信企画)。本是企划监修是由〈Zektbach叙事诗〉的音乐制作人TOMOSUKE(舟木智介),原画为韩国