首页 >
线性相关
✍ dations ◷ 2025-11-30 18:01:23 #线性相关
向量 · 向量空间 · 行列式 · 矩阵标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·在线性代数里,向量空间的一组元素中,若没有向量可用有限个其他向量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R3的三个向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。假设V是在域K上的向量空间。如果v1, v2, ..., vn 是V的向量,称它们为线性相关,如果从域K 中有非全零的元素a1, a2, ..., an,使得或更简略地表示成,(注意右边的零是V的零向量,不是K的零元。)如果K中不存在这样的元素,那么v1, v2, ..., vn是线性无关。对线性无关可以给出更直接的定义。向量v1, v2, ..., vn线性无关,当且仅当它们满足以下条件:如果a1, a2, ..., an是K的元素,适合:那么对所有i = 1, 2, ..., n都有ai = 0。在V中的一个无限集,如果它任何一个有限子集都是线性无关,那么原来的无限集也是线性无关。线性相关性是线性代数的重要概念,因为线性无关的一组向量可以生成一个向量空间,而这组向量则是这向量空间的基。设V = Rn,考虑V内的以下元素:则e1、e2、……、en是线性无关的。假设a1、a2、……、an是R中的元素,使得:由于因此对于{1, ..., n}内的所有i,都有ai = 0。设V是实变量t的所有函数的向量空间。则V内的函数et和e2t是线性无关的。假设a和b是两个实数,使得对于所有的t,都有:我们需要证明a = 0且b = 0。我们把等式两边除以et(它不能是零),得:也就是说,函数bet与t一定是独立的,这只能在b = 0时出现。可推出a也一定是零。R4内的以下向量是线性相关的。我们需要求出标量
λ
1
{displaystyle lambda _{1}}
、
λ
2
{displaystyle lambda _{2}}
和
λ
3
{displaystyle lambda _{3}}
,使得:可以形成以下的方程组:解这个方程组(例如使用高斯消元法),可得:由于它们都是非平凡解,因此这些向量是线性相关的。
相关
- 弓浆虫弓形虫(学名:Toxoplasma gondii),亦称为弓浆虫、弓虫,或连同种小名一起称作龚地弓形虫,是肉孢子虫科弓形虫属的唯一物种,属于寄生性生物。已确定的宿主是猫,而弓形虫的携带者包括了
- 酒母麹,又称麹糵,酿酒中称酒母,是米、糯米、小麦、大麦、黑麦、燕麦、豆类等粮食作物,及其外皮碾磨而成的白色粉末米糠或麦麸受到麹霉菌等微生物感染,经发酵使微生物有效繁殖而得到的
- 高铁酸钾高铁酸钾是一种无机物,化学式为K2FeO4。纯品为暗紫色有光泽粉末。极易溶于水生成浅紫红色溶液,静置时会逐渐分解放出氧气并沉淀出三氧化二铁的水合物,一般写作氢氧化铁,分解过程
- 有67人各国诺贝尔奖得主人数,以主权国家或地区区分计算诺贝尔奖得主总数与人均的列表,也计入诺贝尔经济学奖。。列表同时认可获奖之前(通常是出生地)及获奖当时这2种公民权。倘有双重
- 超共轭超共轭效应在有机化学中是指一个σ键里的电子(通常是C-H或C-C)和一个临近的半满或全空的非键p轨域或反键的π轨域或全满的π轨域之间的相互作用,该相互作用能够使整个体系变得
- 维克多·特纳维克多·威特·特纳 (Victor Witter Turner,1920年5月28日-1983年12月18日),苏格兰文化人类学家,因他的象征、仪式与通过仪式的研究作品而闻名。他的作品,连同克利弗德·格尔茨和其
- 东南亚运动会东南亚运动会(简称东运会,英语:Southeast Asian Games,缩写:SEA Games)是一项两年举办一次的大型综合性地区体育赛事,参赛的国家包括了东南亚地区的11个国家,赛事由国际奥委会和亚洲
- 斯科纳斯科讷(又译斯堪尼亚,瑞典语:Skåne)位于瑞典南部斯堪的那维亚半岛最南端,为约塔兰地区之一旧省。斯科讷虽然面积仅占瑞典的3%,但总人口却达到了1,247,338人,相当于瑞典总人口数13%
- 绷带绷带为一重要急救用品,通常缠绕成卷成为绷带卷,用途如下:绷带卷有不同的阔度,以应付不同伤处。此绷带亦有不同尺寸,价钱较贵但效果较佳。使用时需借助钳形工具。具有网孔,适用于肢
- 预产期预产期(英语:Expected Date of Delivery or Estimated Due Date),缩写为EDD,是一个医学概念,用于预测孕妇的生产时间,即婴儿的出生时间。根据内格莱氏法则进行推算,一般为末次月经
