首页 >
线性相关
✍ dations ◷ 2025-11-20 14:59:27 #线性相关
向量 · 向量空间 · 行列式 · 矩阵标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·在线性代数里,向量空间的一组元素中,若没有向量可用有限个其他向量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R3的三个向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。假设V是在域K上的向量空间。如果v1, v2, ..., vn 是V的向量,称它们为线性相关,如果从域K 中有非全零的元素a1, a2, ..., an,使得或更简略地表示成,(注意右边的零是V的零向量,不是K的零元。)如果K中不存在这样的元素,那么v1, v2, ..., vn是线性无关。对线性无关可以给出更直接的定义。向量v1, v2, ..., vn线性无关,当且仅当它们满足以下条件:如果a1, a2, ..., an是K的元素,适合:那么对所有i = 1, 2, ..., n都有ai = 0。在V中的一个无限集,如果它任何一个有限子集都是线性无关,那么原来的无限集也是线性无关。线性相关性是线性代数的重要概念,因为线性无关的一组向量可以生成一个向量空间,而这组向量则是这向量空间的基。设V = Rn,考虑V内的以下元素:则e1、e2、……、en是线性无关的。假设a1、a2、……、an是R中的元素,使得:由于因此对于{1, ..., n}内的所有i,都有ai = 0。设V是实变量t的所有函数的向量空间。则V内的函数et和e2t是线性无关的。假设a和b是两个实数,使得对于所有的t,都有:我们需要证明a = 0且b = 0。我们把等式两边除以et(它不能是零),得:也就是说,函数bet与t一定是独立的,这只能在b = 0时出现。可推出a也一定是零。R4内的以下向量是线性相关的。我们需要求出标量
λ
1
{displaystyle lambda _{1}}
、
λ
2
{displaystyle lambda _{2}}
和
λ
3
{displaystyle lambda _{3}}
,使得:可以形成以下的方程组:解这个方程组(例如使用高斯消元法),可得:由于它们都是非平凡解,因此这些向量是线性相关的。
相关
- 康恩氏综合征原发性高醛固酮症(Primary aldosteronism),又称康氏症(Conn's syndrome),是肾上腺生产过量醛固酮而造成肾素水平下降而导致的一种疾病,通常症状不严重。大多数人会引起高血压,导致视
- 反磁性抗磁性(Diamagnetism,亦作反磁性)是一些类别的物质,当处在外加磁场中,会对磁场产生的微弱斥力的一种磁性现象。抗磁性的成因,是当物质处在外加磁场中,外加磁场使得物质电子轨道(更精
- 热力学定律热力学,全称热动力学(法语:thermodynamique,德语:Thermodynamik,英语:thermodynamics,源于古希腊语θερμός及δύναμις),是研究热现象中物态转变和能量转换规律的学科。它着
- 自然人自然人(natural person),法律用语,是与法人相对的法律概念。每个生物学意义上的人都是指自然人。只有自然人才有资格享有基本人权。某些权利,诸如选举权和被选举权,也只有自然人才
- 土壤pH值土壤pH值是衡量土壤中酸度或碱度所代表的意义。是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。土壤pH被认为是土壤中的主要变量,因为它控制发生的许
- 盖尔德纳基金会国际奖加拿大盖尔德纳国际奖(Canada Gairdner International Award),原名盖尔德纳基金会国际奖(Gairdner Foundation International Award),是一个始于1959年的学术奖,每年授予在3到6位在
- 羞怯羞怯(英语:Shyness),也叫害羞,是在接近其他人时,所出现恐惧、不舒服、尴尬的感觉,这通常发生在处于新的环境或是和不熟悉的人相处时。害羞可能是自尊感较低的人格特质。害羞感若相
- 永夜坑永夜坑是指太阳系的天体上阳光永远受到遮挡的点。永夜坑的海拔都相当低,并且都是在转轴倾角相当低的天体上。永夜坑可能是适合太空探索和太空移民的地点,在这些区域可能会有水
- 联邦制度联邦制(英语:federation)是由两个或两个以上的政治实体(共和国、州、邦、省等等)结合而成的一种国家结构形式。视国家领导人为君主或民选领导人,联邦制可分为联邦共和制和联邦君主
- 阴道积水阴道积水(英语:Hydrocolpos),是一类由于先天性阴道堵塞(英语:vaginal obstruction)导致的阴道积水。这种障碍通常是由于处女膜闭锁或较少类由于阴道横隔引起。积累液体通常是宫颈和
