首页 >
线性相关
✍ dations ◷ 2024-11-05 21:42:00 #线性相关
向量 · 向量空间 · 行列式 · 矩阵标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·在线性代数里,向量空间的一组元素中,若没有向量可用有限个其他向量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R3的三个向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。假设V是在域K上的向量空间。如果v1, v2, ..., vn 是V的向量,称它们为线性相关,如果从域K 中有非全零的元素a1, a2, ..., an,使得或更简略地表示成,(注意右边的零是V的零向量,不是K的零元。)如果K中不存在这样的元素,那么v1, v2, ..., vn是线性无关。对线性无关可以给出更直接的定义。向量v1, v2, ..., vn线性无关,当且仅当它们满足以下条件:如果a1, a2, ..., an是K的元素,适合:那么对所有i = 1, 2, ..., n都有ai = 0。在V中的一个无限集,如果它任何一个有限子集都是线性无关,那么原来的无限集也是线性无关。线性相关性是线性代数的重要概念,因为线性无关的一组向量可以生成一个向量空间,而这组向量则是这向量空间的基。设V = Rn,考虑V内的以下元素:则e1、e2、……、en是线性无关的。假设a1、a2、……、an是R中的元素,使得:由于因此对于{1, ..., n}内的所有i,都有ai = 0。设V是实变量t的所有函数的向量空间。则V内的函数et和e2t是线性无关的。假设a和b是两个实数,使得对于所有的t,都有:我们需要证明a = 0且b = 0。我们把等式两边除以et(它不能是零),得:也就是说,函数bet与t一定是独立的,这只能在b = 0时出现。可推出a也一定是零。R4内的以下向量是线性相关的。我们需要求出标量
λ
1
{displaystyle lambda _{1}}
、
λ
2
{displaystyle lambda _{2}}
和
λ
3
{displaystyle lambda _{3}}
,使得:可以形成以下的方程组:解这个方程组(例如使用高斯消元法),可得:由于它们都是非平凡解,因此这些向量是线性相关的。
相关
- 咯血咳血又称为咯血,是一种症状,指肺或气管中的出血,经由咳嗽而吐出。多半是因为所吐出的痰中带有血丝而被发现。最常见的原因就是支气管炎、肺炎、肺肿瘤、肺结核等疾病。或是使用
- 豆类豆类指双子叶植物中离瓣植物豆科的泛称,因而概称为豆科植物,亦或称豆子,指其使用的种子。本文特指供作食用或作为动物饲料的种类。豆类植物种类极多,全世界有近二万种,大部分用作
- 偏旁陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧ 小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧ 书法 ‧ 飞白书笔画 ‧
- 派生变化派生变化,又译作衍生变化,(英语:Morphological derivation)在语言学中指的是借由改变原词的句法范畴(英语:Syntactic category)和/或增加实质性而非语法性的含意,从而使现有单词产生新
- 草津温泉草津温泉(日语:草津温泉/くさつおんせん),位于日本群马县吾妻郡草津町的温泉名胜地。其起源已有千年之久。草津温泉的pH值在1.7至2.1,是强酸性硫黄泉,具有医疗功效。林罗山的日本三
- 巴氏消毒法巴氏消毒法(法语:Pasteurisation),法国生物学家路易·巴斯德于1864年发明的消毒方法,原理是用60~90°C的短暂加热,来杀死液体中的微生物,以达到保质的效果;确切温度和时间依照液体的
- 副突变在表观遗传学中,副突变(英语:Paramutation,在台湾也称为类突变)是一个单位点的两个等位基因之间的互作,一个等位基因导致另一个等位基因发生遗传变化,乃是一种打破常规的遗传模式。
- 滑坡滑坡是在自然地质作用和人类活动的影响下,斜坡上的岩土体在重力作用下沿一定的软弱面向下滑动的现象及其形成的地貌形态。在斜性变形破坏的地质灾害中,滑坡分布广、发生概率高
- 伊斯兰教法伊斯兰教法,音译为沙里亚(阿拉伯语:شريعة,Šarīʿa,.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicod
- 苯二氮䓬苯二氮䓬类药物(拉丁语:Benzodiazepines,BZDs、䓬/zhuó/),又译苯二氮平,是一种精神药物,其核心化学结构是一个苯环和一个䓬环。第一种此类药物是氯氮䓬(利眠宁),由Leo Sternbach在195