线性相关

✍ dations ◷ 2025-12-01 19:15:26 #线性相关
向量 · 向量空间  · 行列式  · 矩阵标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·在线性代数里,向量空间的一组元素中,若没有向量可用有限个其他向量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R3的三个向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。假设V是在域K上的向量空间。如果v1, v2, ..., vn 是V的向量,称它们为线性相关,如果从域K 中有非全零的元素a1, a2, ..., an,使得或更简略地表示成,(注意右边的零是V的零向量,不是K的零元。)如果K中不存在这样的元素,那么v1, v2, ..., vn是线性无关。对线性无关可以给出更直接的定义。向量v1, v2, ..., vn线性无关,当且仅当它们满足以下条件:如果a1, a2, ..., an是K的元素,适合:那么对所有i = 1, 2, ..., n都有ai = 0。在V中的一个无限集,如果它任何一个有限子集都是线性无关,那么原来的无限集也是线性无关。线性相关性是线性代数的重要概念,因为线性无关的一组向量可以生成一个向量空间,而这组向量则是这向量空间的基。设V = Rn,考虑V内的以下元素:则e1、e2、……、en是线性无关的。假设a1、a2、……、an是R中的元素,使得:由于因此对于{1, ..., n}内的所有i,都有ai = 0。设V是实变量t的所有函数的向量空间。则V内的函数et和e2t是线性无关的。假设a和b是两个实数,使得对于所有的t,都有:我们需要证明a = 0且b = 0。我们把等式两边除以et(它不能是零),得:也就是说,函数bet与t一定是独立的,这只能在b = 0时出现。可推出a也一定是零。R4内的以下向量是线性相关的。我们需要求出标量 λ 1 {displaystyle lambda _{1}} 、 λ 2 {displaystyle lambda _{2}} 和 λ 3 {displaystyle lambda _{3}} ,使得:可以形成以下的方程组:解这个方程组(例如使用高斯消元法),可得:由于它们都是非平凡解,因此这些向量是线性相关的。

相关

  • 耕地耕地在地理学上是指可以用来种植农作物的土地。地球上1亿4800万平方公里的陆地中大约有3100万是可耕地,但目前可耕地面积正以每年10万平方公里的速度流失。而耕地流失的主因
  • 阳隧足海蛇尾,或阳燧足,是属于棘皮动物门的海蛇尾纲,是种类最多的一个纲,其下包括有220个属和2000个种。海蛇尾的结构与海星相似,但体盘相对较大,腕5个,盘与腕之间有明显交界,而后者腕与盘
  • 宾语受词或称宾语(英语:Object)、受词,是指一个动作(动词)的接受者。例句“我写作业”中,“作业”即为受词。宾语分为直接受词和间接受词两大类,其中直接受词指动作的直接对象,间接受词
  • 齐克果索伦·奥贝·克尔凯郭尔(丹麦语:Søren Aabye Kierkegaard,又译齐克果、祈克果、克尔凯郭尔、吉尔凯高尔等;1813年5月5日-1855年11月11日)是丹麦神学家、哲学家及作家,一般被视为存
  • 共有衍征共有衍征或共源性状,在演化生物学是一种两个或以上终端分类单元共有及从其最近共同祖先承袭的衍生性状状态。共有衍征是一种衍生而来的性状状态,并源自其后最共同祖先。假若有
  • 非洲联盟非洲联盟(法语:Union Africaine; 英语:African Union)是一个由55个非洲国家组成的区域性国际组织,集政治、经济和军事于一体来整合全非洲的政治实体。非洲联盟于未来有计划统一使
  • 秋信守秋信守(朝鲜语:추신수/秋信守、Shin-Soo Choo,1982年7月13日-),在韩国昵称为“辣椒”(因球迷对秋信守欢呼时喊著“Go Choo!”的呼号,音似韩文的辣椒(고추)),出生于韩国的釜山广域市,现为
  • 聚醚醚酮聚醚醚酮(polyetheretherketone,PEEK),为线性芳香族高分子化合物,构成单位为氧-对亚苯基-羰-对亚苯基,为半结晶性,热塑性塑料。PEEK是由英国帝国化学工业公司公司(ICI)于1978年开发出
  • 晚香玉晚香玉(学名:Polianthes tuberosa),别名月下香,是石蒜科(或龙舌兰科)晚香玉属的一种多年生球根开花植物。多年生草本,根状茎块状;线形叶子丛生,先端尖;花茎较长,上部呈总状花序,夏秋开白
  • 费勒芒图费利曼图(Fremantle,简称“费利欧”Freo)为澳大利亚西澳的一个海港城市,位于府城伯斯西南方19千米(12英里),澳大利亚西海岸天鹅河入海口。1829年,成为天鹅河畔的第一个居民点。1929