首页 >
线性相关
✍ dations ◷ 2025-09-18 21:40:26 #线性相关
向量 · 向量空间 · 行列式 · 矩阵标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·在线性代数里,向量空间的一组元素中,若没有向量可用有限个其他向量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性相关(linearly dependent)。例如在三维欧几里得空间R3的三个向量(1, 0, 0),(0, 1, 0)和(0, 0, 1)线性无关。但(2, −1, 1),(1, 0, 1)和(3, −1, 2)线性相关,因为第三个是前两个的和。假设V是在域K上的向量空间。如果v1, v2, ..., vn 是V的向量,称它们为线性相关,如果从域K 中有非全零的元素a1, a2, ..., an,使得或更简略地表示成,(注意右边的零是V的零向量,不是K的零元。)如果K中不存在这样的元素,那么v1, v2, ..., vn是线性无关。对线性无关可以给出更直接的定义。向量v1, v2, ..., vn线性无关,当且仅当它们满足以下条件:如果a1, a2, ..., an是K的元素,适合:那么对所有i = 1, 2, ..., n都有ai = 0。在V中的一个无限集,如果它任何一个有限子集都是线性无关,那么原来的无限集也是线性无关。线性相关性是线性代数的重要概念,因为线性无关的一组向量可以生成一个向量空间,而这组向量则是这向量空间的基。设V = Rn,考虑V内的以下元素:则e1、e2、……、en是线性无关的。假设a1、a2、……、an是R中的元素,使得:由于因此对于{1, ..., n}内的所有i,都有ai = 0。设V是实变量t的所有函数的向量空间。则V内的函数et和e2t是线性无关的。假设a和b是两个实数,使得对于所有的t,都有:我们需要证明a = 0且b = 0。我们把等式两边除以et(它不能是零),得:也就是说,函数bet与t一定是独立的,这只能在b = 0时出现。可推出a也一定是零。R4内的以下向量是线性相关的。我们需要求出标量
λ
1
{displaystyle lambda _{1}}
、
λ
2
{displaystyle lambda _{2}}
和
λ
3
{displaystyle lambda _{3}}
,使得:可以形成以下的方程组:解这个方程组(例如使用高斯消元法),可得:由于它们都是非平凡解,因此这些向量是线性相关的。
相关
- 以色列地以色列地,亦即是迦南地,大致对应于由南地中海东部包围的区域的名字。圣经中,宗教和历史的术语包括迦南地,应许之地,圣地,相当于今日的巴勒斯坦地区。这一领土的界限的定义圣经章节
- 淋巴组织淋巴(英语:Lymph)也称胡豆液,是由组织液渗入毛细淋巴管后形成。淋巴是组织液回流的辅助渠道,参与维持机体的组织液平衡。淋巴是人体免疫系统的重要组成成分,当淋巴流经淋巴结的时
- 热化学热化学(英语:Thermochemistry)是研究化学反应及物质聚集状态改变所伴随的热效应的学科。化学反应和相变(例如熔化、沸腾)都能吸收或放出热量,而热化学研究这些能量变化,尤其是系统
- 实验服实验服又叫作实验衣,是指用于在进行实验时保护身体和里面衣服的工作服。一般都是长袖、及膝,颜色一般为白色,故亦称白大褂。一般多以棉或麻作为制作材料,以便于可以用高温的水来
- 共同起源的证据此条目为生物演化的证据。查尔斯·达尔文在生物学家中第一个科学地论证了生物的演化,并汇集了系统分类学、生物地理学、比较解剖学、比较胚胎学、古生物学等领域的证据,说明如
- 扁虫动物扁虫动物原本是扁形动物门的同义词,此处是几个门的统称,属于两侧对称动物,也被归类为扁虫动物总门(学名:Platyzoa),但此分类尚未成为共识。本总门包括以下门:扁形动物和腹毛动物没有
- Syracuse University雪城大学(Syracuse University)位于美国纽约州雪城,是一家著名私立研究型大学,全美国综合性大学排名约为五十左右。校区与纽约州立大学环境与森林学院相临,环境与森林学院学生可
- 横小管横管(亦称T小管,英语:T-tubule)是肌膜(一种细胞膜)上很深的内陷凹槽,目前只在骨骼肌细胞和心肌细胞上发现。这些横小管能够让膜去极化并迅速吸入细胞内部。肌纤维表面的细胞膜称为
- 水产业渔业、水产业是指采捕或养殖水生动物、植物的生产事业和行业。渔业狭义上指捕捞渔业或称捕鱼业、渔捞业,可细分近海渔业和远洋渔业。此外,渔业还有一种叫养殖渔业(或称水产养殖
- 印太民主治理咨商印太民主治理咨商(英语:Indo-Pacific Democratic Governance Consultation),是一项中华民国与美国的年度官方合作对话平台,进行人权、民主、自由与治理等方面的合作在印太区域增