拉马努金求和

✍ dations ◷ 2025-02-23 15:27:02 #拉马努金求和
拉马努金求和(英语:Ramanujan summation)是由数学家斯里尼瓦瑟·拉马努金所发明的数学技巧,指派一特定值予无限发散级数。尽管拉马努金求和不是传统的和的概念,其在探讨发散级数上极有用处;因为在此情形下,传统的求和方式是无法定义的。拉马努金求和的成果可用在复分析、量子力学及弦理论等领域。拉马努金求和法本质上是部分和的性质,而非整个数列的级数和性质,后者在此情形通常是无法定义的。若我们同时采用欧拉-麦克劳林求和公式以及伯努利数的修正规则,可得:拉马努金写道:当p趋近于无限大,其中C是此级数的特定常数,然而拉马努金并未指定其解析延拓以及积分的上下限。将两式作比较,并假设R趋近于0,而x趋近于无限大;当一函数 f(x) 在x = 0不发散:其中拉马努金假设 a = 0 {displaystyle scriptstyle a,=,0} 。若设 a = ∞ {displaystyle scriptstyle a,=,infty } ,可得到寻常收敛级数的求和式。当一函数 f(x) 在x = 1不发散,可得:C(0)因此被提议用作发散数列的和。在此建立了求和与积分之间的桥梁。下文中, ( ℜ ) {displaystyle scriptstyle (Re )} 表示“拉马努金求和法的值”。此式最早出现在拉马努金的笔记本,笔记本中没有任何注记指示出此为一种新求和法的范例。举例来说,1 - 1 + 1 - 1 + ⋯的 ( ℜ ) {displaystyle scriptstyle (Re )} 为:拉马努金计算了一些知名发散级数的“和”。注意到拉马努金和并非一般级数和的概念,亦即部分和不会收敛到 ( ℜ ) {displaystyle scriptstyle (Re )} 这个值。又如1 + 2 + 3 + 4 + ⋯的拉马努金和 ( ℜ ) {displaystyle scriptstyle (Re )} :延伸至正偶数幂,可得:而奇数幂的结果则与伯努利数有关:目前有提议采用C(1)取代C(0)作为拉马努金求和的结果,以其可保证一个级数 ∑ k = 1 ∞ f ( k ) {displaystyle scriptstyle sum _{k=1}^{infty }f(k)} 允许唯一的拉马努金求和结果。如此拉马努金求和的定义(标作 ∑ n ≥ 1 ℜ f ( n ) {displaystyle scriptstyle sum _{ngeq 1}^{Re }f(n)} )与早期拉马努金求和C(0)不相同,也与收敛级数求和的结果不相同;但其带有有趣的性质:若R(x)趋近于一个有限值极限,当x → +1,则此级数 ∑ n ≥ 1 ℜ f ( n ) {displaystyle scriptstyle sum _{ngeq 1}^{Re }f(n)} 是收敛的,而可得特别是如下例子:其中γ是欧拉-马斯刻若尼常数。拉马努金求和可以延伸至积分:举例来说,运用欧拉-麦克劳林求和公式可写出此为ζ函数正规化演算积分的自然延伸。迭代方程式为有限的,因为当 m − 2 r < − 1 {displaystyle m-2r<-1} ,其中要是 Λ → ∞ {displaystyle Lambda rightarrow infty } ,拉马努金求和可以应用在量子场论的重整化方法,得到有限值的结果。

相关

  • 退伍军人杆菌Legionella adelaidensis Legionella anisa Legionella beliardensis Legionella birminghamensis Legionella bozemanii Legionella brunensis Legionella busanensis Legi
  • 北极圈北极圈是指纬度数值为北纬66.5°的一个假想圈,是北寒带与北温带的分界线,与黄赤交角(南回归线、北回归线所在的纬度数值)余角。北极圈以北的地区被称为“北极圈内”。通常,北极圈
  • 东京理科大学东京理科大学(日语:東京理科大学/とうきょうりかだいがく Tōkyō Rika daigaku;英语译名:Tokyo University of Science),是一所校本部位于日本东京都新宿区神乐坂的私立大学。简
  • 循环循环是计算机科学运算领域的用语,也是一种常见的控制流程。循环是一段在程序中只出现一次,但可能会连续运行多次的代码。循环中的代码会运行特定的次数,或者是运行到特定条件成
  • 阿穆隆阿穆隆(蒙古语:.mw-parser-output .font-mong{font-family:"Menk Hawang Tig","Menk Qagan Tig","Menk Garqag Tig","Menk Har_a Tig","Menk Scnin Tig","Oyun Gurban Ulus Ti
  • 马拉松马拉松(英语:marathon)是一项考验耐力的长跑运动,一般指全程马拉松。这项运动的名称来自公元前490年古希腊时代雅典与波斯之间的马拉松战役。相传希腊在这场战役中击败波斯军队,
  • 玛丽和马克思《玛丽和马克思》(英语:Mary and Max),2009年上映的逐帧粘土动画电影,真人真事改编的半自传电影。该片美国与澳大利亚合作,制作周期长达五年,影片讲述了一个澳大利亚女孩玛丽与他的
  • 外贸协会坐标:25°2′3.23″N 121°33′31.75″E / 25.0342306°N 121.5588194°E / 25.0342306; 121.5588194中华民国对外贸易发展协会(Taiwan External Trade Development Council,简
  • 伊朗历伊朗历(波斯语:گاهشماری ایرانی‌ ‎,拉丁转写:Gahshomari-ye Irani),又名波斯历或Jalaali历,在中国也称回回阳历(但回回历或回历指伊斯兰历,不可用来指称波斯历),是目前
  • 长期增强作用长期增强作用(英语:Long-term potentiation,LTP)又称长时程增强作用、长期增益效应,是由于同步刺激两个神经元而发生在两个神经元信号传输中的一种持久的增强现象。这是与突触可