首页 >
拉马努金求和
✍ dations ◷ 2025-06-07 10:03:44 #拉马努金求和
拉马努金求和(英语:Ramanujan summation)是由数学家斯里尼瓦瑟·拉马努金所发明的数学技巧,指派一特定值予无限发散级数。尽管拉马努金求和不是传统的和的概念,其在探讨发散级数上极有用处;因为在此情形下,传统的求和方式是无法定义的。拉马努金求和的成果可用在复分析、量子力学及弦理论等领域。拉马努金求和法本质上是部分和的性质,而非整个数列的级数和性质,后者在此情形通常是无法定义的。若我们同时采用欧拉-麦克劳林求和公式以及伯努利数的修正规则,可得:拉马努金写道:当p趋近于无限大,其中C是此级数的特定常数,然而拉马努金并未指定其解析延拓以及积分的上下限。将两式作比较,并假设R趋近于0,而x趋近于无限大;当一函数 f(x) 在x = 0不发散:其中拉马努金假设
a
=
0
{displaystyle scriptstyle a,=,0}
。若设
a
=
∞
{displaystyle scriptstyle a,=,infty }
,可得到寻常收敛级数的求和式。当一函数 f(x) 在x = 1不发散,可得:C(0)因此被提议用作发散数列的和。在此建立了求和与积分之间的桥梁。下文中,
(
ℜ
)
{displaystyle scriptstyle (Re )}
表示“拉马努金求和法的值”。此式最早出现在拉马努金的笔记本,笔记本中没有任何注记指示出此为一种新求和法的范例。举例来说,1 - 1 + 1 - 1 + ⋯的
(
ℜ
)
{displaystyle scriptstyle (Re )}
为:拉马努金计算了一些知名发散级数的“和”。注意到拉马努金和并非一般级数和的概念,亦即部分和不会收敛到
(
ℜ
)
{displaystyle scriptstyle (Re )}
这个值。又如1 + 2 + 3 + 4 + ⋯的拉马努金和
(
ℜ
)
{displaystyle scriptstyle (Re )}
:延伸至正偶数幂,可得:而奇数幂的结果则与伯努利数有关:目前有提议采用C(1)取代C(0)作为拉马努金求和的结果,以其可保证一个级数
∑
k
=
1
∞
f
(
k
)
{displaystyle scriptstyle sum _{k=1}^{infty }f(k)}
允许唯一的拉马努金求和结果。如此拉马努金求和的定义(标作
∑
n
≥
1
ℜ
f
(
n
)
{displaystyle scriptstyle sum _{ngeq 1}^{Re }f(n)}
)与早期拉马努金求和C(0)不相同,也与收敛级数求和的结果不相同;但其带有有趣的性质:若R(x)趋近于一个有限值极限,当x → +1,则此级数
∑
n
≥
1
ℜ
f
(
n
)
{displaystyle scriptstyle sum _{ngeq 1}^{Re }f(n)}
是收敛的,而可得特别是如下例子:其中γ是欧拉-马斯刻若尼常数。拉马努金求和可以延伸至积分:举例来说,运用欧拉-麦克劳林求和公式可写出此为ζ函数正规化演算积分的自然延伸。迭代方程式为有限的,因为当
m
−
2
r
<
−
1
{displaystyle m-2r<-1}
,其中要是
Λ
→
∞
{displaystyle Lambda rightarrow infty }
,拉马努金求和可以应用在量子场论的重整化方法,得到有限值的结果。
相关
- 蠕虫病蠕虫病,也称为蠕虫感染,是人和其他动物一部分身体被寄生蠕虫感染导致的一种巨噬细胞疾病。这些寄生虫种类很多,大致分为绦虫、吸虫和线虫。它们通常生活在宿主的胃肠道中,但也可
- NN00-N08 肾小球疾病N10-N16 肾小管、间质疾病N17-N19 肾衰竭N20-N23 尿石病N25-N29 肾和输尿管的其他疾患N30-N39 泌尿系统的其他疾病N40-N51 男性生殖器官疾病N60-N64 乳房
- 小儿麻痹脊髓灰质炎(英语:poliomyelitis,简称polio),俗称小儿麻痹症(中文名称译自日语“小児麻痺”;后者则译自英语infantile paralysis),又译急性灰白髓炎。是由脊髓灰质炎病毒引起,可感染人
- 生活在海洋中海洋真菌(marine fungi),或海生真菌,是生活在海洋或潮间带中的真菌。海洋真菌并不是一个分类单元,而是泛指分属于不同分类群,但生长环境均位于海洋或潮间带的多种真菌。绝对海生真
- 麦角固醇麦角固醇(英语:Ergosterol,又称为麦角甾醇)是从真菌类酵母与麦角菌中发现的一种植物固醇。在紫外线照射下可被转化为维生素D2。它是酵母和真菌细胞膜的组成部分,功能与动物细胞膜
- 环境决定论环境决定论也称为气候决定论或地理决定论。认为人物的生活习惯及其文化特点由其地理条件而形成的理论。地理决定论是由埃尔斯沃思·亨廷顿(英语:Ellsworth Huntington)提出的,他
- 印度太空研究组织name = 'Aero', description = '航空太空科技(航空航天科技)', content = {{ type = 'text', text = [=[本页面没有类似于NoteTA的数量限制。 请自行修改分类名。在NoteTA样板
- 姊妹染色体姐妹染色单体(英语:Sister chromatids,或称姊妹染色单体)是指被同一个着丝粒相连接的两个完全相同的染色体拷贝之一。在DNA复制结束后,每对染色体包含一对相同的备份,被称为姊妹染
- 马努斯板块马努斯板块(Manus Plate)是太平洋的小型板块,位于新畿内亚的东北部。马努斯板块的北面是北俾斯麦板块,而南面则是北俾斯麦板块。50. Bird, P. (2003) An updated digital model
- 植树人植树一般用于林业、土地复垦、或美化环境的目的。它不同于从果树栽培的大型树木移植,成本较低。