拉马努金求和

✍ dations ◷ 2025-04-02 18:31:38 #拉马努金求和
拉马努金求和(英语:Ramanujan summation)是由数学家斯里尼瓦瑟·拉马努金所发明的数学技巧,指派一特定值予无限发散级数。尽管拉马努金求和不是传统的和的概念,其在探讨发散级数上极有用处;因为在此情形下,传统的求和方式是无法定义的。拉马努金求和的成果可用在复分析、量子力学及弦理论等领域。拉马努金求和法本质上是部分和的性质,而非整个数列的级数和性质,后者在此情形通常是无法定义的。若我们同时采用欧拉-麦克劳林求和公式以及伯努利数的修正规则,可得:拉马努金写道:当p趋近于无限大,其中C是此级数的特定常数,然而拉马努金并未指定其解析延拓以及积分的上下限。将两式作比较,并假设R趋近于0,而x趋近于无限大;当一函数 f(x) 在x = 0不发散:其中拉马努金假设 a = 0 {displaystyle scriptstyle a,=,0} 。若设 a = ∞ {displaystyle scriptstyle a,=,infty } ,可得到寻常收敛级数的求和式。当一函数 f(x) 在x = 1不发散,可得:C(0)因此被提议用作发散数列的和。在此建立了求和与积分之间的桥梁。下文中, ( ℜ ) {displaystyle scriptstyle (Re )} 表示“拉马努金求和法的值”。此式最早出现在拉马努金的笔记本,笔记本中没有任何注记指示出此为一种新求和法的范例。举例来说,1 - 1 + 1 - 1 + ⋯的 ( ℜ ) {displaystyle scriptstyle (Re )} 为:拉马努金计算了一些知名发散级数的“和”。注意到拉马努金和并非一般级数和的概念,亦即部分和不会收敛到 ( ℜ ) {displaystyle scriptstyle (Re )} 这个值。又如1 + 2 + 3 + 4 + ⋯的拉马努金和 ( ℜ ) {displaystyle scriptstyle (Re )} :延伸至正偶数幂,可得:而奇数幂的结果则与伯努利数有关:目前有提议采用C(1)取代C(0)作为拉马努金求和的结果,以其可保证一个级数 ∑ k = 1 ∞ f ( k ) {displaystyle scriptstyle sum _{k=1}^{infty }f(k)} 允许唯一的拉马努金求和结果。如此拉马努金求和的定义(标作 ∑ n ≥ 1 ℜ f ( n ) {displaystyle scriptstyle sum _{ngeq 1}^{Re }f(n)} )与早期拉马努金求和C(0)不相同,也与收敛级数求和的结果不相同;但其带有有趣的性质:若R(x)趋近于一个有限值极限,当x → +1,则此级数 ∑ n ≥ 1 ℜ f ( n ) {displaystyle scriptstyle sum _{ngeq 1}^{Re }f(n)} 是收敛的,而可得特别是如下例子:其中γ是欧拉-马斯刻若尼常数。拉马努金求和可以延伸至积分:举例来说,运用欧拉-麦克劳林求和公式可写出此为ζ函数正规化演算积分的自然延伸。迭代方程式为有限的,因为当 m − 2 r < − 1 {displaystyle m-2r<-1} ,其中要是 Λ → ∞ {displaystyle Lambda rightarrow infty } ,拉马努金求和可以应用在量子场论的重整化方法,得到有限值的结果。

相关

  • 全身麻醉全身麻醉剂(英语:general anesthetics)是麻醉药中的一类。麻醉药根据作用部位的不同,可分为全身麻醉药(general anesthetics)和局部麻醉药(local anesthetics)。全身麻醉药作用于中
  • 先天与后天先天与后天(nature versus nurture)是心理学上,争论个人的天生品质(先天)与个人经验(后天)在决定个人心理和行为特性中的重要性或因果关系的问题。以前,当讨论到这个问题时主要是考
  • 毛细管毛细现象(又称毛细管作用)是指液体在细管状物体内侧,由液体与物体之间的附着力和因内聚力而产生的表面张力组合而成,令液体在不需施加外力的情况下,流向细管状物体的现象,该现象甚
  • 甲状腺亢进甲状腺功能亢进症(Hyperthyroidism),又称甲状腺机能亢进症,简称甲状腺亢进、甲亢,是一种由于体内过量的三碘甲腺原氨酸(T3)和 四碘甲腺原氨酸(T4,也即甲状腺素)造成的临床症状。而甲状
  • 第三种性别非二元性别(英语:Non-binary gender)、性别酷儿(英语:genderqueer)和X性别(日语:Xジェンダー)是指一系列不完全是男性或女性的性别认同,这些身份在男性或女性的分类以外。非二元性别可
  • 化学命名法IUPAC命名法(英语:International Union of Pure and Applied Chemistry chemical nomenclature)包括国际纯化学和应用化学联合会(IUPAC)规定的一系列的命名法,它规定从有机到无机
  • 叶全真叶全真(1969年9月12日-),本名赵文君,曾为台湾电影明星,现为电视剧女演员。1987年,17岁时到模特儿经纪公司打工,拍摄服装平面广告。一个月后遇到电影公司前来甄选电影女主角,并在2654
  • 发财金发财金可以指:
  • 客观性客观性是哲学的一个中心概念,指从不同观点或角度来思考或判断某件事物的合理性,一个事物不受主观思想或意识影响而独立存在的性质,跟“主观性”相对应。客观的事实,不受人的思想
  • 玛琳·黛德丽玛丽·玛德莲娜·“玛琳”·黛德丽(德语:Marie Magdalene "Marlene" Dietrich,1901年12月27日-1992年5月6日), 德国演员兼歌手,拥有德国与美国双重国籍,在其近七十年的演艺生涯中持