首页 >
拉马努金求和
✍ dations ◷ 2025-06-28 08:35:57 #拉马努金求和
拉马努金求和(英语:Ramanujan summation)是由数学家斯里尼瓦瑟·拉马努金所发明的数学技巧,指派一特定值予无限发散级数。尽管拉马努金求和不是传统的和的概念,其在探讨发散级数上极有用处;因为在此情形下,传统的求和方式是无法定义的。拉马努金求和的成果可用在复分析、量子力学及弦理论等领域。拉马努金求和法本质上是部分和的性质,而非整个数列的级数和性质,后者在此情形通常是无法定义的。若我们同时采用欧拉-麦克劳林求和公式以及伯努利数的修正规则,可得:拉马努金写道:当p趋近于无限大,其中C是此级数的特定常数,然而拉马努金并未指定其解析延拓以及积分的上下限。将两式作比较,并假设R趋近于0,而x趋近于无限大;当一函数 f(x) 在x = 0不发散:其中拉马努金假设
a
=
0
{displaystyle scriptstyle a,=,0}
。若设
a
=
∞
{displaystyle scriptstyle a,=,infty }
,可得到寻常收敛级数的求和式。当一函数 f(x) 在x = 1不发散,可得:C(0)因此被提议用作发散数列的和。在此建立了求和与积分之间的桥梁。下文中,
(
ℜ
)
{displaystyle scriptstyle (Re )}
表示“拉马努金求和法的值”。此式最早出现在拉马努金的笔记本,笔记本中没有任何注记指示出此为一种新求和法的范例。举例来说,1 - 1 + 1 - 1 + ⋯的
(
ℜ
)
{displaystyle scriptstyle (Re )}
为:拉马努金计算了一些知名发散级数的“和”。注意到拉马努金和并非一般级数和的概念,亦即部分和不会收敛到
(
ℜ
)
{displaystyle scriptstyle (Re )}
这个值。又如1 + 2 + 3 + 4 + ⋯的拉马努金和
(
ℜ
)
{displaystyle scriptstyle (Re )}
:延伸至正偶数幂,可得:而奇数幂的结果则与伯努利数有关:目前有提议采用C(1)取代C(0)作为拉马努金求和的结果,以其可保证一个级数
∑
k
=
1
∞
f
(
k
)
{displaystyle scriptstyle sum _{k=1}^{infty }f(k)}
允许唯一的拉马努金求和结果。如此拉马努金求和的定义(标作
∑
n
≥
1
ℜ
f
(
n
)
{displaystyle scriptstyle sum _{ngeq 1}^{Re }f(n)}
)与早期拉马努金求和C(0)不相同,也与收敛级数求和的结果不相同;但其带有有趣的性质:若R(x)趋近于一个有限值极限,当x → +1,则此级数
∑
n
≥
1
ℜ
f
(
n
)
{displaystyle scriptstyle sum _{ngeq 1}^{Re }f(n)}
是收敛的,而可得特别是如下例子:其中γ是欧拉-马斯刻若尼常数。拉马努金求和可以延伸至积分:举例来说,运用欧拉-麦克劳林求和公式可写出此为ζ函数正规化演算积分的自然延伸。迭代方程式为有限的,因为当
m
−
2
r
<
−
1
{displaystyle m-2r<-1}
,其中要是
Λ
→
∞
{displaystyle Lambda rightarrow infty }
,拉马努金求和可以应用在量子场论的重整化方法,得到有限值的结果。
相关
- 凯利·穆利斯凯利·班克斯·穆利斯(英语:Kary Banks Mullis,1944年12月28日-2019年8月7日),美国生物化学家。1993年因发明聚合酶链式反应(PCR),与迈克尔·史密斯分享诺贝尔化学奖。同年还获得日
- γ球蛋白γ球蛋白(英语:Gamma globulins,又译为丙球蛋白)是球状蛋白质的一类,通过血清蛋白质电泳分别出来,最常见的γ球蛋白为免疫球蛋白(抗体),但并非所有免疫球蛋白都属于γ球蛋白,一些γ球
- 苯六甲酸酐苯六甲酸酐也称为“苯六酸酐”、“苯六羧酸酐”或“蜜石酸酐”等,是一种碳氧化合物,其分子式为C12O9。苯六甲酸酐是苯六甲酸的酸酐,可由苯六甲酸和乙酸酐的混合物加热至120℃制
- 布利奶酪布里奶酪(法文:Brie,又译布利奶酪),是一种柔软的奶酪,以牛奶或者羊奶发酵制成。布里奶酪起源于历史上法国北部的布里(英语:Brie (region))地区(现塞纳-马恩省、部分马恩省和部分埃纳省
- 现役军人数这个列表列出了在役军人和预备役军人人数。它包括所有由政府为进一步推动各自的国内外政策所提供资金的士兵。此文中“国家”为其最常用的用法,即行使主权或有限认可的国家。
- 湖区湖区(Lake District)是英格兰西北部坎布里亚郡的一片乡村地区,是一个度假胜地,以湖泊与群山,并因19世纪初诗人华兹华斯的作品以及湖畔诗人(Lake Poets)而著称。这个区域游客较多的
- 金宝善金宝善(1893年4月23日-1984年11月11日),字楚珍(楚贞),浙江省绍兴县道墟镇人,中国公共卫生学专家,中华医学会前会长,曾任卫生部部长兼行政院政务委员。幼年先后就读于绍兴府学堂(鲁迅小
- 太阳风太阳风(英语:solar wind)特指由太阳上层大气射出的超高速等离子体(带电粒子)流。非出自太阳的类似带电粒子流也常称为“恒星风”。在太阳日冕层的高温(几百万开氏度)下,氢、氦等原子
- 英属印度诸省在印度次大陆,历史上官方根据统治的需要以“省”(Province)名作为一级行政区存在的时间,从1858年英国东印度公司开始,到1950年印度宪法颁布生效不到一百年。1947年印度独立,印巴分
- 欧洲赤松欧洲赤松(学名:Pinus sylvestris)是一种分布在西起大不列颠和伊比利亚半岛,东至东西伯利亚及高加索山脉,北达拉普兰之间,广大范围的树种。在北部,其生长高度为海平面至海拔1000米,在