巴特沃斯滤波器

✍ dations ◷ 2025-05-14 03:44:56 #电子学,线性滤波器

巴特沃斯滤波器是一种通频带(英语:passband)之频率响应曲线平坦无纹波的信号处理滤波器(英语:Filter (signal processing))。它也被称作最大平坦滤波器。这种滤波器最先由英国工程师、物理学家斯替芬·巴特沃斯(英语:Stephen Butterworth)在1930年发表的论文《滤波器放大器理论研究》中提出的。

巴特沃斯滤波器的特点是通频带(英语:passband)内的频率响应曲线最大限度平坦,没有纹波,而在阻频带则逐渐下降为零。在对数波特图上,从某一边界角频率开始,幅度随着角频率的增加而线性减少至负无穷。

一阶巴特沃斯滤波器的衰减率为每倍频6 dB,每十倍频20 dB(所有一阶低通滤波器具有相同的归一化频率响应)。二阶巴特沃斯滤波器的衰减率为每倍频12 dB、 三阶巴特沃斯滤波器的衰减率为每倍频18 dB、如此类推。巴特沃斯滤波器的幅度是 ω 的一个单调函数,并且也是唯一的无论阶数,幅度对角频率曲线都保持同样的形状的滤波器。只不过滤波器阶数越高,在阻频带幅度衰减速度越快。其他滤波器高阶的幅度对角频率图和低级数的幅度对角频率有不同的形状。

阶巴特沃斯低通滤波器的增益 G ( ω ) {\displaystyle G(\omega )} 趋近于无穷,增益变为一个矩形函数,频率低于 ωc 的会以 G 0 {\displaystyle G_{0}} 值,截止就会变得不十分尖锐。

我们希望能够(通过拉普拉斯变换)确定传递函数 ,其中 s = σ + j ω {\displaystyle s=\sigma +j\omega } 个极点等距离地分布在半径为 ωc 的圆上,并关于虚轴对称。为了具有稳定性,传递函数 H(s) 要选择只包含 负实半平面的极点。第 个极点为

因此,

阶巴特沃斯低通滤波器的幅度和频率关系可用如下的公式表示:

G n ( ω ) = | H n ( j ω ) | = 1 1 + ( ω / ω c ) 2 n {\displaystyle G_{n}(\omega )=\left|H_{n}(j\omega )\right|={1 \over {\sqrt {1+(\omega /\omega _{\mathrm {c} })^{2n}}}}} 的头(2n-1)次导数在时为零,说明放大率对 ω 是常数。因此巴特沃斯滤波器又被称为最平坦的滤波器。

因此,n阶巴特沃斯低通滤波器的高频衰减为每十倍频20n 分贝。

k阶巴特沃斯滤波器的考尔第一型电子线路图如下: 其中:

下图是巴特沃斯滤波器(左上)和同阶I型切比雪夫滤波器(右上)、II型切比雪夫滤波器(左下)、椭圆函数滤波器(右下)的频率响应图。

由图可见,巴特沃斯滤波器的衰减速度比其他类型滤波器缓慢,但十分平坦,没有幅度变化。

相关

  • 肌腱病变肌腱病变(英语:Tendinopathy),又称肌腱炎(英语:Tendinitis)或肌腱退化(英语:Tendinosis),是一种肌腱的疾患,可造成疼痛、局部肿胀、与功能障碍。典型的疼痛会随着肢体动作而变得明显。好
  • 后结构主义后结构主义是指跟随在结构主义觉醒之后出现的一套思想,它试图去了解这个分割成数个体系的世界。后结构主义者与它的结构主义前辈最明显不同的地方在于,他们抛弃了结构主义的简
  • 八十年战争八十年战争(荷兰语:Tachtigjarige Oorlog;西班牙语:Guerra de los Ochenta Años),又称为荷兰起义(荷兰语:Nederlandse Opstand)、法兰德斯战争(西班牙语:Guerra de Flandes),是一场哈布
  • 海难列表船难是船舶在运作时发生的事故。以下是民用船舶损失的事故列表:由于红星245号倒船,导致红星240号客轮破口大量入水沉没,而红星240号水泥船壳的钢筋网卡住了红星245号的船首,使之
  • 上加丹加省上加丹加省(法语:Province du Haut Katanga)是位于刚果民主共和国南部的一个省,首府卢本巴希(Lubumbashi),与赞比亚接壤,人口3,960,945(2006年),面积132,425 km²。
  • 陈伯齐陈伯齐(1903年7月-1973年10月),广东台山人。教授、建筑学家。1903年出生于台山汶村北拱一侨工家庭。早年就读于文海书院。1924年毕业于广州高师附属师范学校,在广州教小学。1928
  • 巴里斯·德瓦利奥纳斯巴里斯·德瓦利奥纳斯(立陶宛语:Balys Dvarionas,1904年6月19日-1972年8月23日),立陶宛-苏联作曲家。作品为社会主义现实主义风格,最著名的作品是小提琴协奏曲,获得斯大林奖并被著名
  • 光烟草光烟草(学名:),是茄科烟草属下的一个种。
  • .tl.tl为东帝汶国家及地区顶级域(ccTLD)的域名。该域名有两个来源:一是德顿语Timor Lorosa'e,二是葡萄牙语Timor-Leste。A .ac .ad .ae .af .ag .ai .al .am .ao .aq .ar .as .at
  • 伊拉斯莫斯世界计划伊拉斯谟世界计划(Erasmus Mundus)是“伊拉斯谟计划”的国际化方案。此一计划以中世纪荷兰学者德西德里乌斯·伊拉斯谟而命名;他在15世纪时曾经于欧洲各地的修道院学习。Mundus