李导数

✍ dations ◷ 2025-11-08 07:53:44 #微分几何,黎曼几何,二元运算,导数的推广

在微分几何中,李导数(Lie derivative)是一个以索甫斯·李命名的算子,作用在流形上的张量场,向量场或函数,将该张量沿着某个向量场的流做方向导数。因为该作用在坐标变换下保持不变,因此,该李导数在一般的流形上都是定义良好的。

所有李导数组成的向量空间对应于如下的李括号构成一个无限维李代数。

李导数用向量场表示,这些向量场可看作上的流(flow, 也就是时变微分同胚)的无穷小生成元。从另一角度看,上的微分同胚组成的群,有其对应的李导数的李代数结构,在某种意义上和李群理论直接相关。

李导数有几种等价的定义。在本节,为简便起见,我们用标量场和向量场的李导数的定义开始。李导数也可定义在一般的张量上,如后面的章节所述。

李导数的定义可以从函数的微分开始。这样,给定一个函数 f : M R {\displaystyle f:M\rightarrow \mathbb {R} } 上的向量场 , 在点 p M {\displaystyle p\in M} 的微分。也就是, d f : M T M {\displaystyle df:M\rightarrow T^{*}M} (在中的点)的微分和向量场(在点)的内积。

或者,可以先表明上的光滑向量场定义了一个上的单参数曲线族。也就是,可以表明存在曲线 γ ( t ) {\displaystyle \gamma (t)} 上使得

其中 p = γ ( 0 ) {\displaystyle p=\gamma (0)} 中的点成立。这个一阶常微分方程的解的存在性由皮卡-林德洛夫定理给出(更一般的,这种曲线的存在性是弗罗贝尼乌斯定理给出)。然后可以定义李导数为

第三个可能的定义可以通过先定义一对向量场的李括号给出。首先注意到切空间的基向量可以写为 x a {\displaystyle {\frac {\partial }{\partial x^{a}}}} 的李导数等于和的李括号,也就是,

根据上面任选的一个定义,其他的定义可被证明为其等价形式。例如,可以证明,对于一个可微函数,

并且

我们用在1-形式 ω = ω a d x a {\displaystyle \omega =\omega _{a}dx^{a}} 上的函数组成的代数。则

是一个在代数 F ( M ) {\displaystyle {\mathcal {F}}(M)} 上的向量场的集合:

也可写为等价形式

其中张量积符号 {\displaystyle \otimes } 上的向量空间是李代数”的重要结果。

李导数和外导数密切相关,因此和埃里·嘉当的微分流形理论相关。两个都试图给出导数的思想,其差别几乎只是记号上的。这个区别可以通过引入反导数或等效的内积来消除。这之后,两者的关系就体现在一组恒等式上。

令为一个流形,为上一个向量场。令 ω Λ k + 1 ( M ) {\displaystyle \omega \in \Lambda ^{k+1}(M)} +1-形式。和ω的内积为

注意

以及 i X {\displaystyle i_{X}} 上的函数,有

外导数和李导数的关系可以总结为以下这些。对于一般函数,李导数就是外导数和向量场的内积:

对于一般的微分流形,李导数类似于内积,加上的变化:

当ω为1-形式,上述恒等式经常写作

导数的乘积是可分配的

在微分几何中,如果我们有一个 ( p , q ) {\displaystyle (p,q)} 阶可微张量场(我们可以把它当作余切丛 T M {\displaystyle T^{*}M} 的光滑截面 α , β , {\displaystyle \alpha ,\beta ,\ldots } 和切丛 T M {\displaystyle TM} 的截面 X , Y , {\displaystyle X,Y,\ldots } 的线性映射 T ( α , β , , X , Y , ) {\displaystyle T(\alpha ,\beta ,\ldots ,X,Y,\ldots )} ),使得对于任何函数 f 1 , , f p , f p + 1 , , f p + q {\displaystyle f_{1},\ldots ,f_{p},f_{p+1},\ldots ,f_{p+q}}

而且如果进一步有一个可微向量场(也就是切丛的一个光滑截面) A {\displaystyle A} ,则线性映射

独立于联络∇;只要它是无挠率的,事实上,这个映射是一个张量。这个张量称为 T {\displaystyle T} 关于 A {\displaystyle A} 的李导数。

换句话说,如果你有一个张量场 T {\displaystyle T} 和一个由向量场 U {\displaystyle U} 给出的微分同胚的无穷小生成元,则 L U T {\displaystyle {\mathcal {L}}_{U}T} 就是 T {\displaystyle T} 在这个无穷小微分同胚下的无穷小变化。

或者,给定向向量场 U {\displaystyle U} ,令ψ为 U {\displaystyle U} 的积分曲线族,向上面那样。注意ψ是一个局部单参数局部微分同胚群。令 ψ {\displaystyle \psi ^{*}} 为由ψ诱导的拉回(pullback)。则张量 T {\displaystyle T} p {\displaystyle p} 点的李导数如下

相关

  • 爱丁堡爱丁堡(英语:Edinburgh,i/ˈɛdɪnbərə/、苏格兰盖尔语:Dùn Èideann),是英国苏格兰首府,也是继格拉斯哥后苏格兰的第二大城市,位于苏格兰东海岸福斯湾南岸。2013年全市人口为487
  • 组织工程学组织工程学(Tissue engineering),是指利用生物活性物质,通过体外培养或构建的方法,再造或者修复器官及组织的技术。这个概念由美国国家科学基金委员会在1987年提出,在此后的二十多
  • 鸟氨酸鸟氨酸(英语:Ornithine)是一种α-氨基酸,其结构为NH2-CH2-CH2-CH2-CHNH2-COOH。鸟氨酸是精氨酸酶在催化精氨酸产生尿素时同时产生。因此,鸟氨酸是尿素循环的中央部分,以排出多余的
  • 集韵《集韵》和《礼部韵略》都是宋仁宗景祐四年(公元1037年)由丁度等人奉命编写的官方韵书。据李焘《说文解字五音谱叙》记载,宋仁宗景祐四年,即《广韵》颁行后29年,宋祁、郑戬给仁宗
  • 利贝昆氏腺利贝昆氏腺是位于十二指肠壁和空肠壁的一种外分泌腺,在不同的位置,其功能不尽相同。
  • 原型理论原型理论(prototype theory)在认知科学中,是一种分级归类的模式。在这种模式中,在同一个范畴中,某些项目会比其他项目更为核心。例如,当我们想到这个概念的时候,会比起更常常被提起
  • 乌喙突乌喙突是由乌喙骨退化而成为附着在肩胛骨上的一个突起。主要是在哺乳类身上出现,而原羽鸟是目前所知最早有乌喙突的乌类。
  • 天主教新潟教区天主教新潟教区(拉丁语:Dioecesis Niigataënsis;日语:カトリック新潟教区)是日本一个罗马天主教教区,属东京总教区。宗座监牧区于1912年8月13日成立,1962年4月16日升为教区。新潟
  • 纵向冗余校验纵向冗余校验(Longitudinal redundancy check,缩写LRC),是通信中常用的一种校验形式。纵向冗余校验(LRC)是一种从纵向通道上的特定比特串产生校验比特的错误检测方法。在行列格式
  • 共变导数数学上,共变导数或称协变导数是在流形上定义沿着向量场的导数的方法之一。事实上,除了引入的风格不同之外,共变导数和联络没有实质上的区别。在黎曼和伪黎曼流形理论中,共变导数