向量 · 向量空间 · 行列式 · 矩阵
标量 · 向量 · 向量空间 · 向量投影 · 外积 · 内积 · 数量积 · 向量积
矩阵 · 行列式 · 线性方程组 · 秩 · 核 · 迹 · 单位矩阵 · 初等矩阵 · 方块矩阵 · 分块矩阵 · 三角矩阵 · 非奇异方阵 · 转置矩阵 · 逆矩阵 · 对角矩阵 · 可对角化矩阵 · 对称矩阵 · 反对称矩阵 · 正交矩阵 · 幺正矩阵 · 埃尔米特矩阵 · 反埃尔米特矩阵 · 正规矩阵 · 伴随矩阵 · 余因子矩阵 · 共轭转置 · 正定矩阵 · 幂零矩阵 · 矩阵分解 (LU分解 · 奇异值分解 · QR分解 · 极分解 · 特征分解) · 子式和余子式 · 拉普拉斯展开 ·
线性空间 · 线性变换 · 线性子空间 · 线性生成空间 · 基 · 线性映射 · 线性投影 · 线性无关 · 线性组合 · 线性泛函 · 行空间与列空间 · 对偶空间 · 正交 · 特征向量 · 最小二乘法 · 格拉姆-施密特正交化 ·
在线性代数中,阶单位矩阵,是一个的方形矩阵,其主对角线元素为1,其余元素为0。单位矩阵以表示;如果阶数可忽略,或可由前后文确定的话,也可简记为(或者)。(在部分领域中,如量子力学,单位矩阵是以粗体字的1表示,否则无法与作区别。)
一些数学书籍使用和(分别意为“单位矩阵”和“基本矩阵”),不过更加普遍。
特别是单位矩阵作为所有阶矩阵的环的单位,以及作为由所有阶可逆矩阵构成的一般线性群的单位元(单位矩阵明显可逆,单位矩阵乘自己,仍是单位矩阵)。
这些阶矩阵经常表示来自维向量空间自己的线性变换,表示恒等函数,而不理会基。
有时使用这个记法简洁的描述对角线矩阵,写作:
也可以克罗内克尔δ记法写作:
根据矩阵乘法的定义,单位矩阵的重要性质为:
单位矩阵的特征值皆为1,任何向量都是单位矩阵的特征向量。具有重数 。因为特征值之积等于行列式,所以单位矩阵的行列式为1。因为特征值之等于迹数,单位矩阵的迹为。