前推 (微分)

✍ dations ◷ 2025-09-16 12:12:25 #微分几何,光滑函数

假设  : → 是光滑流形之间的光滑映射;则 在一点 处的微分在某种意义上是 在 附近的最佳线性逼近。这可以视为通常微积分中全导数的推广。确切地说,它是从 在 处的切空间到 在 () 处的切空间的一个线性映射,从而可以将 的切向量“前推”成 的切向量。

映射 的微分也被一些的作者称为 的导数或全导数,有时它自己也之称为前推(pushforward)。

设 :→ 是从 Rm 的一个开集 到 Rn 的开集 的一个光滑映射。对任何 中的给定点 , 在 的雅可比矩阵(关于标准坐标)是 在 的全微分的矩阵表示,这是一个从 Rm 到 Rn 的线性映射:

我们希望将其推广到 是“任何”两个光滑流形 与 之间的光滑映射。

令  : → 是光滑流形间的光滑映射。给定某点 ∈ , 在 的微分或(全)导数是从 在 的切空间到 在 () 的切空间一个线性映射

映射 dx 运用到切向量 上有时称为 由 的前推。前推的确切定义取决于我们怎样定义切向量(不同的定义可参见切空间)。

如果我们定义切向量为通过 的曲线等价类,那么微分由

给出,这里 是 上满足 (0) = 的一条曲线。换句话说,一条曲线 在 0 处切向量的前推恰好是 {\displaystyle \circ } 在 0 处的切向量。

另一种方式,如果切向量定义为作用在光滑实值函数上的导子,那么微分由

给出,这里 ∈ ,从而 是定义在 上的一个导子而 是 上一个光滑实值函数。根据定义,在给定 上 处 的前推在 () 中,从而定义了一个N上的导子。

取定 与 () 附近的坐标卡以后, 局部由 R 与 R 之间的光滑映射

确定。而 dx 具有表示(在 附近):

这里使用了爱因斯坦求和约定,偏导数对 坐标卡相应的 中的点取值。

线性扩张得到如下矩阵

从而光滑映射 在每一点的微分是切空间之间的一个线性变换。从而在某些选定的局部坐标下,它表示为相应的从 R 到 R 光滑映射的雅可比矩阵。一般情形,微分不要求可逆。如果 是一个局部微分同胚,那么在 点的前推是可逆的,其逆给出 () 的拉回。

另外,局部微分同胚的微分是切空间之间的线性同构。

微分经常有其他一些记法,比如

从定义可得出复合函数的微分便是微分的复合(即,具有函子性质),这便是光滑函数微分的链式法则。

光滑映射 的微分以显而易见的方式诱导了从 的切丛到 的切丛的一个丛映射(事实上是向量丛同态),记为 d 或 *,满足如下的交换图表:

这里 与 分别表示 与 切丛的丛投影。

等价地(参见丛映射),* = d 是从 到 上的拉回丛 的丛映射,这可以看成 上向量丛 Hom(,*) 的一个截面。

给定了一个光滑映射 :→ 与 上一个向量场 ,一般不能定义 通过 的前推为 的一个向量场。譬如,如果映射 不是满射,则在 的像外部没有自然的方式定义拉回;如果 不是单射也有可能在给定一点拉回不止一种选择。无论如何,可以用“沿着映射的向量场”概念将难处变精确。

上 的一个截面称为沿着 的向量场。例如,如果 是 的一个子丛而 是包含映射,那么沿着 的向量场恰好是 沿着 的切丛的一个截面;特别的, 上的向量通过 包含到 中定义这样一个截面。这种想法推广到任何光滑映射。

假设 是 上一个向量场,即 的一个截面。那么,运用逐点微分得出 的前推 *,这是一个沿着 的向量场,即 上 的一个截面。

任何 上的向量场 定义了 的一个拉回截面 使得 () = ()。 上一个向量场 与 上一个向量场 称为 -相关的,如果作为沿着 的向量场有 = 。换句话说,对任何 属于 ,有 d()=()

在某些情形,给定 上一个向量场 , 上只有惟一的向量场 与 -相关。特别地,这在 是微分同胚时自然成立。在这种情况下,前推定义了 上一个向量场 ,由

给出。一个更一般的情形是 为满射(比如纤维丛的丛投影)。这时 上的向量场 称为可投影的,如果对任何 属于 , d() 与 属于 -1({}) 的取法无关。这恰好是保证 的前推可以作为 上的一个良定的向量场的条件。

相关

  • 体内In vivo为拉丁文“在活体内”之意。在科学文献中,in vivo常指进行于完整且存活的个体内的组织的实验,以区别在生物体上移除下来的组织或死亡的组织上进行的实验(对应的拉丁文为
  • 台北市友好城市或姐妹城市列表
  • 田律《田律》是中国秦代的法律,是世界上第一条环保法律。《田律》共六条,规限了国民在什么时候才可以上山砍划树木,什么时候可以开始火耕。
  • 上古汉语上古汉语指的是周朝至汉朝时期的汉语,继承原始汉语发展而来,其语音依照演进又可细分先秦音系与汉代音系。因为上古汉语的构拟不建立在历史比较语言学的基础上,因汉字非拼音文字
  • 沙状病毒沙状病毒科(Arenavirinae, ARV)是一种会造成严重的人畜共同传染病的病毒科类。其宿主,啮齿类动物,尤其是老鼠,和人之关系自古已来,均交往过于密切,造成本科病毒在人类和老鼠宿主
  • 普雷佩查语普雷佩查语(P'urhépecha )又称塔拉斯卡语,是分布于墨西哥米却肯州的美洲原住民语言,属于孤立语言。普雷佩查语是中美洲古国塔拉斯卡王国的主要语言,该国的主要民族是普雷佩查人
  • 美国国家森林列表美国境内共拥有154座国家森林,总面积188,336,179英亩(762,169.48平方千米)。这些国家森林均由美国农业部下属的美国国家森林局管控。1891年3月3日通过的《森林保护法》赋予了美
  • 电源切换开关电源切换开关(Transfer switch),是一种将负载线路由一电源切换至另一电源的电源回路切换装置。又分为手动与自动两种。自动电源切换开关(Automatic Transfer Switch),简称ATS,能够
  • 书麟书麟(满语:ᡧᡠᠯᡳᠨ,穆麟德:,1730年-1801年),字绂斋,高佳氏,满洲镶黄旗人,大学士高晋长子。初授銮仪卫整仪尉,累迁冠军使,擢西安副都统。乾隆三十八年,为领队大臣,随参赞大臣丰昇额征金川
  • 尹宗华尹宗华(1964年8月-),男,汉族,浙江嵊州人,中华人民共和国政治人物,现任中国国际贸易促进委员会副会长、党组成员,中华海外联谊会副会长,第十三届全国政协委员。