前推 (微分)

✍ dations ◷ 2024-12-22 15:05:26 #微分几何,光滑函数

假设  : → 是光滑流形之间的光滑映射;则 在一点 处的微分在某种意义上是 在 附近的最佳线性逼近。这可以视为通常微积分中全导数的推广。确切地说,它是从 在 处的切空间到 在 () 处的切空间的一个线性映射,从而可以将 的切向量“前推”成 的切向量。

映射 的微分也被一些的作者称为 的导数或全导数,有时它自己也之称为前推(pushforward)。

设 :→ 是从 Rm 的一个开集 到 Rn 的开集 的一个光滑映射。对任何 中的给定点 , 在 的雅可比矩阵(关于标准坐标)是 在 的全微分的矩阵表示,这是一个从 Rm 到 Rn 的线性映射:

我们希望将其推广到 是“任何”两个光滑流形 与 之间的光滑映射。

令  : → 是光滑流形间的光滑映射。给定某点 ∈ , 在 的微分或(全)导数是从 在 的切空间到 在 () 的切空间一个线性映射

映射 dx 运用到切向量 上有时称为 由 的前推。前推的确切定义取决于我们怎样定义切向量(不同的定义可参见切空间)。

如果我们定义切向量为通过 的曲线等价类,那么微分由

给出,这里 是 上满足 (0) = 的一条曲线。换句话说,一条曲线 在 0 处切向量的前推恰好是 {\displaystyle \circ } 在 0 处的切向量。

另一种方式,如果切向量定义为作用在光滑实值函数上的导子,那么微分由

给出,这里 ∈ ,从而 是定义在 上的一个导子而 是 上一个光滑实值函数。根据定义,在给定 上 处 的前推在 () 中,从而定义了一个N上的导子。

取定 与 () 附近的坐标卡以后, 局部由 R 与 R 之间的光滑映射

确定。而 dx 具有表示(在 附近):

这里使用了爱因斯坦求和约定,偏导数对 坐标卡相应的 中的点取值。

线性扩张得到如下矩阵

从而光滑映射 在每一点的微分是切空间之间的一个线性变换。从而在某些选定的局部坐标下,它表示为相应的从 R 到 R 光滑映射的雅可比矩阵。一般情形,微分不要求可逆。如果 是一个局部微分同胚,那么在 点的前推是可逆的,其逆给出 () 的拉回。

另外,局部微分同胚的微分是切空间之间的线性同构。

微分经常有其他一些记法,比如

从定义可得出复合函数的微分便是微分的复合(即,具有函子性质),这便是光滑函数微分的链式法则。

光滑映射 的微分以显而易见的方式诱导了从 的切丛到 的切丛的一个丛映射(事实上是向量丛同态),记为 d 或 *,满足如下的交换图表:

这里 与 分别表示 与 切丛的丛投影。

等价地(参见丛映射),* = d 是从 到 上的拉回丛 的丛映射,这可以看成 上向量丛 Hom(,*) 的一个截面。

给定了一个光滑映射 :→ 与 上一个向量场 ,一般不能定义 通过 的前推为 的一个向量场。譬如,如果映射 不是满射,则在 的像外部没有自然的方式定义拉回;如果 不是单射也有可能在给定一点拉回不止一种选择。无论如何,可以用“沿着映射的向量场”概念将难处变精确。

上 的一个截面称为沿着 的向量场。例如,如果 是 的一个子丛而 是包含映射,那么沿着 的向量场恰好是 沿着 的切丛的一个截面;特别的, 上的向量通过 包含到 中定义这样一个截面。这种想法推广到任何光滑映射。

假设 是 上一个向量场,即 的一个截面。那么,运用逐点微分得出 的前推 *,这是一个沿着 的向量场,即 上 的一个截面。

任何 上的向量场 定义了 的一个拉回截面 使得 () = ()。 上一个向量场 与 上一个向量场 称为 -相关的,如果作为沿着 的向量场有 = 。换句话说,对任何 属于 ,有 d()=()

在某些情形,给定 上一个向量场 , 上只有惟一的向量场 与 -相关。特别地,这在 是微分同胚时自然成立。在这种情况下,前推定义了 上一个向量场 ,由

给出。一个更一般的情形是 为满射(比如纤维丛的丛投影)。这时 上的向量场 称为可投影的,如果对任何 属于 , d() 与 属于 -1({}) 的取法无关。这恰好是保证 的前推可以作为 上的一个良定的向量场的条件。

相关

  • 免疫接种免疫(英语:immunity),指生物机体识别和排除抗原物质的一种保护性反应。其中包括特异性免疫(后天免疫系统)与非特异性免疫(先天免疫系统)。“免疫”一词,最早见于中国明代医书《免疫类
  • 4f10 6s22, 8, 18, 28, 8, 2蒸气压3, 2, 1 (弱第一:573.0 kJ·mol−1 第二:1130 kJ·mol−1 第三:2200 kJ·mol主条目:镝的同位素.mw-parser-output ruby>rt,.mw-parser-out
  • 晶格晶体结构是指晶体的周期性结构。固体材料可以分为晶体、准晶体和非晶体三大类,其中,晶体内部原子的排列具有周期性,外部具有规则外形,比如钻石(图)。Hauy最早提出晶体的规则外型是
  • 弗雷德里克·奇卢巴弗雷德里克·雅各布·泰塔斯·齐卢巴(Frederick Jacob Titus Chiluba,1943年4月30日-2011年6月18日)是赞比亚政治家,于1991年11月至2002年1月担任该国第二任总统,是该国第一位由民
  • 第八舰队第8舰队为昭和17年(1942年)7月14日日本海军编制成军之舰队。称呼为“外南洋部队”。日本军在新几内亚・所罗门群岛方面(外南洋)担当任务的舰队是由水上部队以及陆上部队所编成。
  • 刘艾立刘艾立(1992年3月14日-),艺名Erika,台湾女歌手,华裔美国加州人,第七届《超级星光大道》参赛者。在百人初选时被黄韵玲相中因而选入队伍中,也是队上的强棒之一。Erika在分组对抗赛时
  • 波尔理查德·默思·伯尔(英语:Richard Mauze Burr;1955年11月30日-),是一位美国共和党政治人物,自2005年成为北卡罗莱纳州联邦参议院议员。此前他曾是美国众议院北卡罗莱纳州第一国会选
  • 奥斯特罗赫城堡奥斯特罗赫城堡(乌克兰语:Острозький замок,波兰语:Zamek w Ostrogu)是位于乌克兰西部城市奥斯特罗赫的一座城堡建筑。在14至16世纪,城堡曾是奥斯特罗赫家族的主要
  • 三多三多(蒙古语:Сандо;1871年-1941年),钟木依氏,汉姓张,字六桥,蒙古族,蒙古正白旗人,浙江杭州驻防旗人。清末民初文人、书画家、政治人物。三多于清朝同治十年(1871年)五月廿二日在杭州
  • 马捷·林尼坎马捷·林尼坎(斯洛伐克语:Matej Hliničan,1994年9月21日-),斯洛伐克男子羽毛球运动员。2015年11月,马捷·林尼坎出战波多黎各国际系列赛,与捷克选手扬·弗罗利希合作打进男子双打比