前推 (微分)

✍ dations ◷ 2025-07-15 05:06:17 #微分几何,光滑函数

假设  : → 是光滑流形之间的光滑映射;则 在一点 处的微分在某种意义上是 在 附近的最佳线性逼近。这可以视为通常微积分中全导数的推广。确切地说,它是从 在 处的切空间到 在 () 处的切空间的一个线性映射,从而可以将 的切向量“前推”成 的切向量。

映射 的微分也被一些的作者称为 的导数或全导数,有时它自己也之称为前推(pushforward)。

设 :→ 是从 Rm 的一个开集 到 Rn 的开集 的一个光滑映射。对任何 中的给定点 , 在 的雅可比矩阵(关于标准坐标)是 在 的全微分的矩阵表示,这是一个从 Rm 到 Rn 的线性映射:

我们希望将其推广到 是“任何”两个光滑流形 与 之间的光滑映射。

令  : → 是光滑流形间的光滑映射。给定某点 ∈ , 在 的微分或(全)导数是从 在 的切空间到 在 () 的切空间一个线性映射

映射 dx 运用到切向量 上有时称为 由 的前推。前推的确切定义取决于我们怎样定义切向量(不同的定义可参见切空间)。

如果我们定义切向量为通过 的曲线等价类,那么微分由

给出,这里 是 上满足 (0) = 的一条曲线。换句话说,一条曲线 在 0 处切向量的前推恰好是 {\displaystyle \circ } 在 0 处的切向量。

另一种方式,如果切向量定义为作用在光滑实值函数上的导子,那么微分由

给出,这里 ∈ ,从而 是定义在 上的一个导子而 是 上一个光滑实值函数。根据定义,在给定 上 处 的前推在 () 中,从而定义了一个N上的导子。

取定 与 () 附近的坐标卡以后, 局部由 R 与 R 之间的光滑映射

确定。而 dx 具有表示(在 附近):

这里使用了爱因斯坦求和约定,偏导数对 坐标卡相应的 中的点取值。

线性扩张得到如下矩阵

从而光滑映射 在每一点的微分是切空间之间的一个线性变换。从而在某些选定的局部坐标下,它表示为相应的从 R 到 R 光滑映射的雅可比矩阵。一般情形,微分不要求可逆。如果 是一个局部微分同胚,那么在 点的前推是可逆的,其逆给出 () 的拉回。

另外,局部微分同胚的微分是切空间之间的线性同构。

微分经常有其他一些记法,比如

从定义可得出复合函数的微分便是微分的复合(即,具有函子性质),这便是光滑函数微分的链式法则。

光滑映射 的微分以显而易见的方式诱导了从 的切丛到 的切丛的一个丛映射(事实上是向量丛同态),记为 d 或 *,满足如下的交换图表:

这里 与 分别表示 与 切丛的丛投影。

等价地(参见丛映射),* = d 是从 到 上的拉回丛 的丛映射,这可以看成 上向量丛 Hom(,*) 的一个截面。

给定了一个光滑映射 :→ 与 上一个向量场 ,一般不能定义 通过 的前推为 的一个向量场。譬如,如果映射 不是满射,则在 的像外部没有自然的方式定义拉回;如果 不是单射也有可能在给定一点拉回不止一种选择。无论如何,可以用“沿着映射的向量场”概念将难处变精确。

上 的一个截面称为沿着 的向量场。例如,如果 是 的一个子丛而 是包含映射,那么沿着 的向量场恰好是 沿着 的切丛的一个截面;特别的, 上的向量通过 包含到 中定义这样一个截面。这种想法推广到任何光滑映射。

假设 是 上一个向量场,即 的一个截面。那么,运用逐点微分得出 的前推 *,这是一个沿着 的向量场,即 上 的一个截面。

任何 上的向量场 定义了 的一个拉回截面 使得 () = ()。 上一个向量场 与 上一个向量场 称为 -相关的,如果作为沿着 的向量场有 = 。换句话说,对任何 属于 ,有 d()=()

在某些情形,给定 上一个向量场 , 上只有惟一的向量场 与 -相关。特别地,这在 是微分同胚时自然成立。在这种情况下,前推定义了 上一个向量场 ,由

给出。一个更一般的情形是 为满射(比如纤维丛的丛投影)。这时 上的向量场 称为可投影的,如果对任何 属于 , d() 与 属于 -1({}) 的取法无关。这恰好是保证 的前推可以作为 上的一个良定的向量场的条件。

相关

  • 头臂动脉干头臂动脉干(英语:Brachiocephalic trunk),又称无名动脉(英语:innominate artery)为主动脉弓的第一条分支,主要供应头部右侧、右颈,及右臂的血流。头臂动脉干位于纵膈腔内,在其自主动脉
  • 蛋白酪氨酸磷酸酶蛋白酪氨酸磷酸酶(protein tyrosine phosphatase)的功能是去除蛋白上磷酸化酪氨酸的磷脂基团。蛋白酪氨酸磷酸化是一个常见的翻译后修饰,能够产生新的用于蛋白相互作用以及调
  • 德国小蠊德国姬蠊(学名:Blattella germanica),亦作德国小蠊,俗称德国蟑螂,是蟑螂的一种,身长多为1.0到1.6厘米,比美洲大蠊小。颜色有浅棕色至深棕色,而且在其前胸有两条由头部至翅膀末端的直
  • 视觉暂留视觉暂留(英文:Persistence of vision)也称为正片后像,是光对视网膜所产生的视觉,在光停止作用后,仍然保留一段时间的现象,其具体应用是电影的拍摄和放映。原因是由视神经的反应速
  • 丹尼尔·笛福丹尼尔·笛福(Daniel Defoe,1660年9月13日-1731年4月24日),原名丹尼尔·福(Daniel Foe),英国小说家、新闻记者、小册子作者。其作品主要为个人通过努力,靠自己的智慧和勇敢战胜困难。
  • 水肿水肿(edema、/ɪˈdimə/、oedema、dropsy、hydropsy;希腊语οἴδημα, "swelling"),又称浮肿,是指人体皮下空腔因体液异常堆积所产生的肿大症状。水肿是指血管外的组织间隙中
  • 阿利乌教派阿利乌教派(英语:Arianism),又译阿利乌派,即阿利乌主义,是4世纪亚历山大港正教会的包加里教区长老阿利乌及其支持者的基督徒派别,故称阿利乌派。认为《圣经》的启示说明耶稣次于天
  • 黄泰安黄泰安(Titan Huang,1979年8月10日-),是一位台湾男演员,参与多部电视剧演出、广告拍摄等工作。
  • 10月28日10月28日是阳历一年中的第301天(闰年第302天),离全年的结束还有64天。
  • 营门口街道营门口街道,是中华人民共和国四川省成都市金牛区下辖的一个乡镇级行政单位。营门口街道下辖以下地区:营门口路社区、银沙路社区、银桂桥社区、长庆路社区、花照社区和茶店社区