模棱函数

✍ dations ◷ 2025-11-22 01:51:59 #函数,信号处理

模棱函数是一套用于讯号分析与讯号设计的数学方法,为菲力浦·伍德沃德(Philip Woodward)在1953年所提出。其原初目的是用来分析雷达回波讯号受时间延迟和多普勒位移的影响,但在随后的发展中,也广泛的被使用在时频分析、讯号处理等领域上。

函数 s ( t ) {\displaystyle s(t)} 的模棱函数 A ( τ , η ) {\displaystyle A(\tau ,\eta )} 定义为:

其中, τ {\displaystyle \tau } 代表着和原始讯号的时间差分值,而 η {\displaystyle \eta } 则代表和原始讯号的频率差分值,而这样的二维空间称为模棱域(Ambiguity Domain)。以雷达应用来说, τ {\displaystyle \tau } 反映了送出去的讯号和回波讯号的时间延迟(Time Delay), η {\displaystyle \eta } 则反映了两讯号间的多普勒位移(Dopple Frequency Shift)。星号 {\displaystyle *} 代表对函数取其共轭复数。上式为自时域定义之模棱函数。我们也可以透过函数 s ( t ) {\displaystyle s(t)} 的傅立叶转换对 S ( f ) {\displaystyle S(f)} 从频域定义之:

稍经修改,模棱函数也可以用对称的形式定义之,称为对称模棱函数(Symmetric Ambiguity Function):


模棱函数有下列几种基本性质:

模棱函数最大值永远发生在模棱域的原点 ( 0 , 0 ) {\displaystyle (0,0)}

模棱函数为一对称函数:

当我们设定频率差值 η {\displaystyle \eta } 为0时,模棱函数将退化为讯号 s ( t ) {\displaystyle s(t)} 的自相关函数:

若方波定义为:: r e c t ( t , T ) = { 1 , if | t | T 2 0 , if | t | > T 2 {\displaystyle rect(t,T)={\begin{cases}1,&{\mbox{if}}\left|t\right|\leq {\frac {T}{2}}\\0,&{\mbox{if}}\left|t\right|>{\frac {T}{2}}\end{cases}}} ,则其模棱函数 A r e c t ( τ , η ) {\displaystyle A_{rect}(\tau ,\eta )} 计算如下:
A r e c t ( τ , η ) = r e c t ( t + τ 2 ) r e c t ( t τ 2 ) e j 2 π η t d t {\displaystyle A_{rect}(\tau ,\eta )=\int _{-\infty }^{\infty }rect(t+{\frac {\tau }{2}})rect^{*}(t-{\frac {\tau }{2}})e^{j2\pi \eta t}dt}
= ( T τ ) / 2 ( T τ ) / 2 e j 2 π η t d t = { ( T | τ | s i n c ) for | τ | T 0 for | τ | > T {\displaystyle =\int _{-(T-\tau )/2}^{(T-\tau )/2}e^{j2\pi \eta t}dt={\begin{cases}(T-\left|\tau \right|sinc)&{\mbox{for}}\left|\tau \right|\leq T\\0{\mbox{for}}\left|\tau \right|>T\end{cases}}}

对一个高斯讯号 g ( t ) = e α t 2 {\displaystyle g(t)=e^{-\alpha t^{2}}} 而言,其模棱函数为:
A G ( τ , η ) = 1 2 e α ( τ 2 + η 2 ) 2 {\displaystyle A_{G}(\tau ,\eta )={\frac {1}{\sqrt {2}}}e^{\frac {-\alpha (\tau ^{2}+\eta ^{2})}{2}}}

模棱函数是伍德沃德依据维格纳分布改良而来。两者之间详细的关系请参阅模糊函数与韦格纳分布的关系。

模棱函数一开始即是由雷达领域研究学者菲利浦·伍德沃德由维格纳分布发展而来,因此其原初应用多为雷达相关,是该领域相当重要的基础理论。随着时序的演进和时频分析方法的兴起,越来越多的时频分析方法使用了模棱函数的观念。例如,西摩·斯坦于1981年提到,模棱函数可以用来估算具有相同成分之两个讯号,因受外加噪声干扰而造成之频率、时间位移;而时频分析工具科恩克莱斯分布则是运用一函数之模棱函数并搭配适当的遮罩函数,做为分析该函数时频特性的基础。

相关

  • 古菌素古菌素(英语:archaeocin)系一类从古菌中分离出的,有潜力成为新型强效抗生素的物质。已部分或完全确认了8种古菌素的存在,但古菌素的数量应多达数百种,而且这里面有很大一部分应该
  • 藜(学名:Chenopodium album)为苋科藜属的植物。分布于全球温带及热带以及中国各地,生长于海拔50米至4,200米的地区,见于路旁、荒地及田间。灰菜(救荒本草)
  • 苏门达腊岛苏门答腊(印尼语:Sumatera)是印尼最西面的一个大岛,也是全球第六大岛屿。全岛面积达47万平方公里。苏门答腊岛呈西北—东南走向,在中间与赤道相交叉,由两个地区组成:西部巴里散山脉
  • 西尔莎·罗南Rising Star2008 最佳电影女配角2008 《赎罪》2009 《死亡挑战行动》2011 《回来的路》西尔莎·乌娜·罗南(英语:Saoirse Una Ronan,/ˈsɜːrʃə ˈuːnə ˈroʊnən/ SUR-
  • 代议民主代议民主制(英语:representative democracy),又称间接民主制(英语:indirect democracy),与直接民主制相反,是由公民以选举形式选出立法机关的成员(议员),并代表其在议会中行使权力(称为代
  • 几维鸟Stictapteryx Iredale & Mathews, 1926 Kiwi Verheyen, 1960 Pseudapteryx Lydekker 1891鹬鸵(Kiwi),又译为奇异鸟、几维鸟、奇威鸟,泛指无翼鸟科(Apterygidae)下的鸟,无翼鸟属(Apte
  • 莫切文化莫切文化(Moche civilization),又译摩奇文明,是秘鲁西北部海岸拉利伯塔德大区(La Libertad)茄攀省(茄攀省)莫切河附近发现的一个古代印第安文明。这个文明比印加文明还要早,属于早期
  • 萨卡拉哈区萨卡拉哈区(马达加斯加语:Sakaraha),是马达加斯加的行政区,位于该国南部,由阿齐莫-安德列发那区负责管辖,首府设于萨卡拉哈,面积8,447平方公里,2011年人口107,147,人口密度每平方公里1
  • 别洛瓦尔别洛瓦尔(克罗地亚语:Bjelovar,匈牙利语:Belovár)位于克罗地亚北部,为别洛瓦尔-比洛戈拉县首府。
  • NHM-91自动步枪NHM-91是一款由中华人民共和国武器制造商中国北方工业有限公司所生产、并且由美国加利福尼亚州安大略省的中国运动公司(CSI Ont,CA)在美国销售的半自动步枪,(被认为)是俄罗斯卡拉