数学分析

✍ dations ◷ 2025-07-27 08:15:44 #数学分析
数学分析(英语:mathematical analysis)区别于其他非数学类学生的高等数学内容,是分析学中最古老、最基本的分支,一般指以微积分学、无穷级数和解析函数等的一般理论为主要内容,并包括它们的理论基础(实数、函数、测度和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。数学分析研究的内容包括实数、复数、实函数及复变函数。数学分析是由微积分演进而来,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微积分中也包括许多数学分析的基础概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其几何有关,不过只要任一数学空间有定义邻域(拓扑空间)或是有针对两物件距离的定义(度量空间),就可以用数学分析的方式进行分析。在古希腊数学的早期,数学分析的结果是隐含给出的。比如,芝诺的两分法悖论就隐含了无限几何和。再后来,古希腊数学家如欧多克索斯和阿基米德使数学分析变得更加明确,但还不是很正式。他们在使用穷竭法去计算区域和固体的面积和体积时,使用了极限和收敛的概念。在古印度数学(英语:Indian mathematics)的早期,12世纪的数学家婆什迦罗第二给出了导数的例子,还使用过现在所知的罗尔定理。历史上,数学分析起源于17世纪,伴随着牛顿和莱布尼兹发明微积分而产生的。在17、18世纪,数学分析的主题,如变分法,常微分方程和偏微分方程,傅立叶分析以及母函数基本上发展于应用工作中。微积分方法成功的运用了连续的方法近似了离散的问题。贯穿18世纪,函数概念的定义成为了数学家们争论的主题。到了19世纪,柯西首先地通过引入柯西序列的概念将微积分建立在一个稳固的逻辑基础之上。他还开始了复分析的形式理论。泊松、刘维尔、傅里叶以及其他的数学家研究了偏微分方程和调和分析。在那个世纪的中叶,黎曼引入了他的积分理论。在19世纪的最后第三个年代还产生了魏尔施特拉斯对于分析的算术化,他认为几何论证从本质上是一种误导,并导入了极限的(ε,δ)定义。此时,数学家们开始担心他们在没有证明的情况下假设了实数连续统的存在。戴德金用戴德金分割构造了实数。大约在那个时候,对黎曼积分精炼的种种尝试也引向了实数函数的非连续集合的“大小”的研究。在十九世纪末时,也发现了许多病态函数(英语:pathological (mathematics)),像是处处不连续函数、处处连续但处处不可微分的魏尔斯特拉斯函数以及空间填充曲线(英语:Space-filling curve)等,卡米尔·若尔当发展了若尔当测度,而格奥尔格·康托尔提出了现在称为朴素集合论的理论,勒内-路易·贝尔证明了贝尔纲定理。在二十世纪初期,利用公理化的集合论将微积分进行形式化,昂利·勒贝格解决了量测问题,大卫·希尔伯特导入了希尔伯特空间来求解积分方程。赋范向量空间的概念已经提出,1920年代时斯特凡·巴拿赫创建了泛函分析。数学中的度量空间是一个集合,而集合中两个元素的距离(叫做度量)有清楚的定义。大部分的数学分析都是针对特定的度量空间,最常见的是数线、复数平面、欧几里得空间、其他向量空间及整数。数学中没有度量的分包括有量测理论(描述大小而不是距离)及泛函分析(研究不需要距离概念的拓扑向量空间)度量空间是一个有序对 ( M , d ) {displaystyle (M,d)} ,其中 M {displaystyle M} 是一集合,而 d {displaystyle d} 为 M {displaystyle M} 中的度量〈也是函数〉使得针对任何的 x , y , z ∈ M {displaystyle x,y,zin M} ,以下的叙述都成立:数列是一个有序的列表,数列像集合一样都是由元素组成,但和集合不同,数列有顺序的概念,而完全相同的元素可以在数列中出现一至多次。更准确的说法,数列可以用定义域为全序关系可数集(例如自然数)的函数来定义。数列最重要的性质是收敛,若简单的做非正式的定义,一数列若存在极限,表示此数列收敛。若继续下非正式的定义,一个无穷数列an,若在n非常大时接近一数值x,则称此数列有极限,而其极限为x,因此极限也可以视为是数列趋向的数值。因此针对数列an,当n → ∞时,an和x之间的距离会趋近于0:数学分析在当前被分为以下几个分支领域:数学分析的技巧可以用在其他以下的领域:经典力学、相对论及量子力学中大部分的内容都是以数学分析及微分方程为基础。其中重要的微分方程包括牛顿第二运动定律、薛定谔方程及爱因斯坦场方程。泛函分析是量子力学中的一个重要主题。信号处理可以用在许多不同信号的处理上,不论是声音、无线电波、光波、地震波其至影像,傅立叶分析可以取出信号中特定的成分,可以进一步将信号加强或是移除。大部分的信号处理技术都包括了将信号进行傅立叶转换、转换后信号进行简单的处理,再进行反转换。数学分析的技巧可以用在以下的数学领域中:

相关

  • 996工作制996工作制,是指一种“早上9点上班,晚上9点下班,每周工作6天”的用工制度,有时也被用来指代一系列资方要求劳方延长工时而不额外给薪的工作制度。最初多因网络及软件行业的员工交
  • 爆炸当量爆炸当量又称“TNT当量”,是指炸药的爆炸造成的威力,相当于多少质量单位的三消硝基甲苯(TNT)爆炸所造成的威力相同。质量单位通常以千克(kg)或吨(t)来计量,而在核武器的威力衡量上则
  • 夫夫夫夫(英语:gay couple)是指在同性婚姻合法的地区或国家,男性和男性经过一定仪式(婚礼)或法律程序确立婚姻后的关系。一般会共同生活、维持经济、一同养育子女等。夫夫双方互为对方
  • 井,是一种用来从地表下取水的装置,中国传说是伯益发明了井。远古时代即有水井,《易经》记“改邑不改井”。孔颖达疏:“古者穿地取水,以瓶引汲,谓之为井。”在公元前721年,伊朗有坎
  • 四甲基氯化铵四甲基氯化铵是一种化合物,化学式为C4H12N+Cl−。可用作相转移催化剂、模板剂、极谱试剂或贵金属的分离试剂。电解四甲基氯化铵的水溶液,可以得到四甲基氢氧化铵。
  • 各国人均酒精消费量列表这是一个各国年人均酒精消费量列表,单位为升,数据来源于世界卫生组织。
  • 碳酸碳酸(英语:Carbonic acid),原来也称挥发酸(Volatile acid)和呼吸酸(Respiratory acid), 化学式为H2CO3,是酸的一种。二氧化碳(CO2)溶于水后,一部分二氧化碳会与水化合,形成碳酸。该反应是
  • 勒维奥托·勒维(Otto Loewi,1873年6月3日-1961年12月25日),奥地利-德国-美国药理学家。生于法兰克福,毕业于慕尼黑大学与斯特拉斯堡大学,后前往奥地利格拉茨大学从事研究。他与亨利·哈
  • 穹窿体RNA穹窿体RNA(英语:vault RNA,简称vRNA)是一种存在于穹窿体核糖核蛋白复合物中的非编码RNA,该类RNA于1986年被首次发现。作为一种核糖核蛋白复合物,穹窿体除了含有8-16条短链RNA外,还
  • 市场定位市场定位也称作“营销定位”,是市场营销工作者用以在目标市场(此处目标市场指该市场上的客户和潜在客户)的心目中塑造产品、品牌或组织的形象或个性(identity)的营销技术。是在目