等距同构

✍ dations ◷ 2025-11-21 03:54:22 #度量几何,函数,对称

在数学中,“等距同构”或称“保距映射”(isometry、简称等距),是指在度量空间之中保持距离不变的同构关系。几何学中的对应概念是全等变换。

等距同构经常用于将一个空间嵌入到另一空间的构造中。例如,测度空间的完备化即涉及从到的等距同构,这里是上柯西序列所构成的空间关于“距离为零”的等价关系的商集。这样,原空间就等距同构到完备的度量空间的一个稠密子空间并且通常用这一空间来指代原空间。 其它的嵌入构造表明每一度量空间都等距同构到某一赋范向量空间的一个闭子集以及每一完备度量空间都等距同构到某一巴拿赫空间的一个闭子集。

一个希尔伯特空间上的等距、满射的线性算子被称为酉算子。

设, 是两个度量空间,其中的距离分别是。一个映射 : → 被称为“保距映射”,如果对任意的, ∈ ,都有

保距映射一定是单射。任意两个度量空间之间的等距同构都必然是一个拓扑嵌入。

等距同构是一一对应的保距映射,有时也被称为全局等距同构。还有一种定义是路径等距同构,指保持所有曲线长度的映射(不一定是一一对应的)。

如果两个度量空间之间存在一个等距同构,就称它们两个为等距同构的。所有从一个度量空间到另一个的等距同构关于映射的复合运算组成一个群,称为等距同构群。

在赋范向量空间之间可以定义线性等距同构:所有保持范数的线性映射:

线性等距同构一定是保距映射,因此如果是满射,就是(全局)等距同构。

根据马祖-玉兰定理,系数域为实数的赋范向量空间上的等距同构一定是仿射变换。

相关

  • 加勒比地区加勒比海及其附近区域。若依照联合国地理分区里的地理亚区来判定,加勒比地区的范围为加勒比海上的诸岛—西印度群岛,国家与地区包含安圭拉、安提瓜和巴布达、阿鲁巴、巴哈马、
  • dATP去氧腺苷三磷酸(Deoxyadenosine triphosphate,dATP)是一种去氧核苷酸三磷酸(dNTP),结构与腺苷三磷酸(ATP)相似,但少了一个位于五碳糖2号碳上的-OH基,取而代之的是单独的氢原子。若移去
  • 香肠香肠(英语:Sausage)是一个非常古老的食物生产和肉食保存技术,指将动物的血肉或是凝固的内脏,搅碎成泥状,再灌入肠衣制作而成。在中国一些地区,“香肠”专指腊肠。在闽南,广东地区,又
  • 毕达哥拉斯学派毕达哥拉斯主义是一个用于描述毕达哥拉斯和他的追随者所持的秘教和形而上学的思想学说的术语。他们都深受数学所影响。毕达哥拉斯主义起源于公元前5世纪,对柏拉图主义有重要
  • 库尔德语库尔德语(كوردي, Kurdî‎ .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium
  • 犹他大学犹他大学(University of Utah),位于美国犹他州的盐湖城市,是一所综合性公立大学,由耶稣基督后期圣徒教会领袖杨百翰于1850年建立。作为该州的旗舰大学,它提供100多个本科专业和92
  • 1696年重要事件及趋势重要人物
  • 第二次菲律宾战役(1944年-45年)1944年至1945年的菲律宾战役是在美国麦克阿瑟将军率领的盟军反击日军的一系列战役。菲律宾、美国及澳大利亚军队在道格拉斯·麦克阿瑟将军领导下,于1944年10月1
  • 前体细胞在细胞生物学中,前体细胞(英语:precursor cell,也被称为母细胞,blast cell)是指已经部分分化的细胞,其分化潜能仅为单能性,较祖细胞更少。前体细胞可视为从干细胞分化到具体细胞的最
  • 理查德·卡普理查德·曼宁·卡普(英语:Richard Manning Karp,1935年1月3日-),计算机科学家以及计算理论家。为柏克莱加州大学教授,在算法理论方面有卓越的贡献,因此获得1979年的富尔克森奖,1985年