螺旋函数(Swirl function)是一个以三角函数定义的特殊函数:
S ( k , n , r , θ ) = s i n ( k ∗ c o s ( r ) − n ∗ θ ) {\displaystyle S(k,n,r,\theta )=sin(k*cos(r)-n*\theta )}
其中k,n均为整数。k与螺旋叶的长度与形状有关,n为螺旋的叶片数。
S ( k , n , r , θ + 2 π n ) = S ( k , n , r , θ ) {\displaystyle S(k,n,r,\theta +{\frac {2\pi }{n}})=S(k,n,r,\theta )}
S ( k , n , r , θ ) ≈ s i n ( k − n ∗ θ ) − ( 1 / 2 ) ∗ c o s ( k − n ∗ θ ) ∗ k ∗ r 2 + ( − ( 1 / 8 ) ∗ s i n ( k − n ∗ θ ) ∗ k 2 + ( 1 / 24 ) ∗ c o s ( k − n ∗ θ ) ∗ k ) ∗ r 4 + ( ( 1 / 48 ) ∗ s i n ( k − n ∗ θ ) ∗ k 2 + c o s ( k − n ∗ θ ) ∗ ( − ( 1 / 720 ) ∗ k + ( 1 / 48 ) ∗ k 3 ) ) ∗ r 6 + O ( r 8 ) {\displaystyle S(k,n,r,\theta )\approx {sin(k-n*\theta )-(1/2)*cos(k-n*\theta )*k*r^{2}+(-(1/8)*sin(k-n*\theta )*k^{2}+(1/24)*cos(k-n*\theta )*k)*r^{4}+((1/48)*sin(k-n*\theta )*k^{2}+cos(k-n*\theta )*(-(1/720)*k+(1/48)*k^{3}))*r^{6}+O(r^{8})}}
S ( k , n , r , θ ) ≈ s i n ( k ∗ c o s ( r ) ) − c o s ( k ∗ c o s ( r ) ) ∗ n ∗ θ − ( 1 / 2 ) ∗ s i n ( k ∗ c o s ( r ) ) ∗ n 2 ∗ θ 2 + ( 1 / 6 ) ∗ c o s ( k ∗ c o s ( r ) ) ∗ n 3 ∗ θ 3 + ( 1 / 24 ) ∗ s i n ( k ∗ c o s ( r ) ) ∗ n 4 ∗ θ 4 − ( 1 / 120 ) ∗ c o s ( k ∗ c o s ( r ) ) ∗ n 5 ∗ θ 5 − ( 1 / 720 ) ∗ s i n ( k ∗ c o s ( r ) ) ∗ n 6 ∗ θ 6 + ( 1 / 5040 ) ∗ c o s ( k ∗ c o s ( r ) ) ∗ n 7 ∗ θ 7 + ( 1 / 40320 ) ∗ s i n ( k ∗ c o s ( r ) ) ∗ n 8 ∗ θ 8 + O ( θ 9 ) {\displaystyle S(k,n,r,\theta )\approx {sin(k*cos(r))-cos(k*cos(r))*n*\theta -(1/2)*sin(k*cos(r))*n^{2}*\theta ^{2}+(1/6)*cos(k*cos(r))*n^{3}*\theta ^{3}+(1/24)*sin(k*cos(r))*n^{4}*\theta ^{4}-(1/120)*cos(k*cos(r))*n^{5}*\theta ^{5}-(1/720)*sin(k*cos(r))*n^{6}*\theta ^{6}+(1/5040)*cos(k*cos(r))*n^{7}*\theta ^{7}+(1/40320)*sin(k*cos(r))*n^{8}*\theta ^{8}+O(\theta ^{9})}}
7,-2
7,2
7,-4
7,4
7,-6
7,6
7,-8
7,8
7,-10
7,10
7,-12
7,12
0,4
1,4
2,4
-5,4
-9,4
30,4