在可计算性理论中的形式语言理论中,泵引理(Pumping lemma)声称给定类的任何语言可以被“抽吸”并仍属于这个类。一个语言可以被抽吸,如果在这个语言中任何足够长的字符串可以分解成片段,其中某些可以任意重复来生成语言中更长的字符串。这些引理的证明典型的需要计数论证比如鸽笼原理。
两个最重要例子是正则语言的泵引理和上下文无关语言的泵引理。鄂登引理是另一种更强的上下文无关语言的泵引理。
这些引理可以用来确定特定语言不在给定语言类中。但是它们不能被用来确定一个语言在给定类中,因为满足引理是类成员关系的必要条件,但不是充分条件。
泵引理是1961年由 Y. Bar-Hillel、M. Perles 和 E. Shamir首次发表的。
假设 是上下文无关语言,则存在一常数 > 0 使得语言 中每个字串 的长度 || ≧ ,而当 = 时:
透过泵引理以反证法证明 不是上下文无关语言。