big.LITTLE

✍ dations ◷ 2025-11-25 09:10:31 #ARM架构

ARM big.LITTLE或big.LITTLE是由安谋国际科技公司(ARM)提出的异质运算多核心处理器配置结构配置。在这个配置,将比较耗电、但运算能力强的处理器核心组成的“big集群”与低耗电、运算能力弱的处理器核心组成的“LITTLE集群”结合在一起,这些处理器核心共享存储器区段,并能够在不同的CPU集群之间在线实时分派、切换负载。这个多核心处理器配置结构运用在移动计算上,从而能够做出计算高性能,但是平均耗电低的多核心处理器,ARM的市场数据称在某些运算操作中这个配置配置相比只使用与“big集群”相同CPU核心数量的处理器可节省多达75%的功耗。

本配置配置式在2011年10月ARM发表Cortex-A7时首次对外公布,Cortex-A15也能够与这个架构兼容。2012年10月,ARM公司宣布Cortex-A53(英语:ARM Cortex-A53)与Cortex-A57(英语:ARM Cortex-A57)(ARMv8)也能与这个架构兼容。2014年2月ARM发表Cortex-A17(英语:ARM Cortex-A17),同一年在Computex 2013上ARM又发表了Cortex-A12(英语:ARM Cortex-A12),这两种CPU核心也可用于big.LITTLE配置式中的“big集群”上(“LITTLE集群”由Cortex-A7担当)。

2017年5月,ARM发表DynamIQ取代big.LITTLE。与big.LITTLE相比,DynamIQ允许更为灵活的CPU核心配置和更大规模的集群设计(每个CPU集群可以有八颗CPU核心)、集群数量更多(一块CPU上最大可扩展至32个集群)、更精确的电源控制(每个核心内有更多的时钟门控和电压控制)以及更快速的L2缓存访问操作。然而DynamIQ仅适用于Cortex-A75、Cortex-A55及往后推出的ARM CPU核心。

big.LITTLE中,节电的“LITTLE集群”和高性能的“big集群”之间有三种切换方式,均要求在线实时操作,除了电路设计以外还需要操作系统的配合得当(一些方式需要依赖操作系统的工作流调度实现)

最早也是最简单的big.LITTLE配置实现是这种大小核心集群的切换,高性能CPU核心亦即大核心组成“big集群”,而低功耗CPU核心亦即小核心,则是组成“LITTLE集群”。操作系统的调度器在某一时间点上只能见到一组CPU集群,整个处理器的负载高低变化时,系统会在不同集群间转移负载。当负载从一个CPU集群转移至另一CPU集群时,相关的数据、运行状态等被保存在这些集群共享的二级缓存(L2 Cache)当中,先前运作的CPU集群断电关闭然后加电压开启另一个集群。集群的数据转移还需要使用缓存一致性互联(CCI)。这种big.LITTLE的第一个实现是三星Exynos 5410 Octa。这种方式的一大缺点是CPU集群间的切换延时较高,并且CPU核心的利用率较低。

这种切换方式自集群切换方式演变,主要区别在于每一个集群对操作系统调度器来说都是可见的。在此种方式中,任务在CPU核心之间切换使用内核内置切换器(in-kernel switcher,IKS),芯片设计上是一个高性能CPU核心和一个低功耗CPU核心组成一个复合集群,这一个集群作为一个“虚拟的”核心来供操作系统操作,同一时间点上这一对CPU核心只有一颗在运作,高性能CPU核心仅在有高性能运算需求时才开启,运算性能需求低时则是只开启低功耗核心。当虚拟核心内负载在高低之间变化时,先开启将要切换到的CPU核心,转移运行状态,转移完成后关闭先前运行的CPU核心,由该CPU核心继续运行先前的处理进程。切换工作需要通过cpufreq框架完成。Linux 3.11内核开始提供了big.LITTLE IKS完整实现所需内核组件模块。

苹果公司的A10 Fusion以及A10X Fusion即采用此种big.LITTLE配置。不过,更复杂多样的“大小核心”CPU核心分组,也是有可能的,一只采用IKS方式的处理器上容许一个虚拟核心内有一颗以上的高性能CPU核心或低功耗CPU核心,或者是相同的CPU核心而分成主副CPU核心。英伟达的Tegra 3 SoC也采用类似IKS切换方式,但Tegra 3上采用的是相同的CPU核心,多个主CPU核心与一个副CPU核心的设计。

异质多处理(heterogeneous multi-processing,HMP)是big.LITTLE配置中最灵活也是性能最强劲的使用模式,在这种配置中,同一时间点上所有的物理CPU核心都是可用的并且可以同时全部开启使用,也可以将高性能CPU核心全数关闭而只使用低功耗CPU核心。高优先级或者对运算速度吃重的线程可以被分派至高性能CPU核心上,而低优先级或对运算速度要求不高的线程(如背景任务),则是由低功耗CPU核心负责完成

最早的实现是三星电子的Exynos Octa 5420/5422/5430。而现时大部分实现big.LITTLE配置的ARM架构兼容处理器,多采用这种切换方式。迫于移动设备对CPU核心规模的控制,苹果公司的Apple A11也采用此种调度方式。

全局任务调度的优势:

对于大小CPU核心(集群)成对配置的,它们之间的切换过程对操作系统来说是透明的,操作系统使用现成的动态电压与时钟信号调整(DVFS)功能来实现。操作系统核心现成的DVFS支持(像是Linux核心的cpufreq)将根据负载轻重,从预先设置的一个时钟信号-核心电压参数配置表中以合适的参数设置CPU的电压与时脉,和此前仅需调整核心电压、时脉的CPU一样,然而,较低的参数设置则会开启节电(小)CPU核心,而较高的参数设置则是开启高性能(大)CPU核心。

另一种相对的,则是所有的CPU核心都呈现给操作系统内核调度器,调度器将依据请求决定由哪个核心运行哪个行程或线程。这种调度方式需要非成对配置的CPU核心(集群),不过成对配置的CPU核心(集群)也可能允许使用。不过这种调度方式更考验操作系统内核调度器的调校功力(多核心处理器的性能最优化),至少当前大多数的硬件中,多核心处理器的结构使用的是对称多处理器系统,big.LITTLE配置其实也不例外。

相关

  • 温带温带(英语:Temperate climate、德语:Gemäßigte Zone、法语:Climat tempéré),在地理学上,是位于热带和极圈之间的气候带。北半球温带区的范围是从北纬23.5°的北回归线到北纬66.
  • 乙醛酸循环乙醛酸循环(英语:Glyoxylate cycle)又称乙醛酸途径、乙醛酸旁路,其名称来自于此路径经由产生乙醛酸来节省柠檬酸循环所会损失的两个二氧化碳。此路径只存在于植物和微生物中。其
  • 荷兰议会执政联盟(38)在野党(37)联合政府(76)在野党(74)国会(荷兰语:Staten-Generaal)是荷兰王国的两院制立法机构,包括一院(Eerste Kamer)(上议院,即参议院)和二院(Tweede Kamer)(下议院,即众议院)。国会
  • 苦酒汤苦酒汤,出自《伤寒杂病论》。为治咽痛、声哑之方剂。少阴病,咽中伤,生疮,痛引喉旁,不能语言,声不出者。
  • 宪法监督委员会保守派控制:宪法监护委员会(波斯语:شورای نگهبان قانون اساسی‎)是伊朗由6名乌理玛(伊斯兰教神学者或神职人员)和6名律师组成的集行政、立法、司法职责于一
  • 广州广州府,明清时广东省的府。清代隶广肇罗道。元朝时为广州路,明朝洪武十一年(1378年),改广州府。下领一州:连州(领阳山县、连山县),十五县:南海县、番禺县、顺德县、东莞县、新安县、三
  • 单色画单色画(英语:monochromatic painting),又称为独色画,是20世纪以来先锋派艺术的重要元素,通过单一色彩进行绘画创作,代表人物包括马列维奇、伊夫·克莱因、格哈德·里希特(Gerhard Ri
  • 和名类聚抄《和名类聚抄》是日本平安时代的类书。在承平年间(931年至938年)由学者源顺应勤子内亲王要求所编纂。是日本的第一部类书。和名类聚抄或称倭名类聚钞及倭名类聚抄,由于名称也不
  • 香料贸易香料贸易在人类历史上有着举足轻重的作用,尤其是中世纪的欧洲,对香料的渴望直接催生了地理大发现。从遥远的东方运送香料到欧洲的贸易线路被称为香料之路。香料作为当时最贵重
  • 古城区古城区是中华人民共和国云南省丽江市下属的市辖区。下辖:西安街道、大研街道、祥和街道、束河街道、金山街道、开南街道、文化街道、金安镇、七河镇、大东乡和金江白族乡。