正则化 (数学)

✍ dations ◷ 2025-11-04 19:57:03 #机器学习,计算机科学

在数学与计算机科学中,尤其是在机器学习和逆问题领域中,正则化(英语:regularization)是指为解决适定性问题或过拟合而加入额外信息的过程。

在机器学习和逆问题的优化过程中,正则项往往被加在目标函数当中。

概括来讲,机器学习的训练过程,就是要找到一个足够好的函数 F {\displaystyle F^{*}} 用以在新的数据上进行推理。为了定义什么是“好”,人们引入了损失函数的概念。一般地,对于样本 ( x , y ) {\displaystyle ({\vec {x}},y)} 和模型 F {\displaystyle F} ,有预测值 y ^ = F ( x ) {\displaystyle {\hat {y}}=F({\vec {x}})} 。损失函数是定义在 R × R R {\displaystyle \mathbb {R} \times \mathbb {R} \to \mathbb {R} } 上的二元函数 ( y , y ^ ) {\displaystyle \ell (y,{\hat {y}})} ,用来描述基准真相和模型预测值之间的差距。一般来说,损失函数是一个有下确界的函数;当基准真相和模型预测值足够接近,损失函数的值也会接近该下确界。

因此,机器学习的训练过程可以被转化为训练集 D {\displaystyle {\mathcal {D}}} 上的最小化问题。我们的目标是在泛函空间内,找到使得全局损失 L ( F ) = i D ( y i , y ^ i ) {\displaystyle L(F)=\sum _{i\in {\mathcal {D}}}\ell (y_{i},{\hat {y}}_{i})} 最小的模型 F {\displaystyle F^{*}}

F := arg min F L ( F ) . {\displaystyle F^{*}:=\mathop {\text{arg min}} _{F}L(F).}

由于损失函数只考虑在训练集上的经验风险,这种做法可能会导致过拟合。为了对抗过拟合,我们需要向损失函数中加入描述模型复杂程度的正则项 Ω ( F ) {\displaystyle \Omega (F)} ,将经验风险最小化问题转化为结构风险最小化。

F := arg min F Obj ( F ) = arg min F ( L ( F ) + γ Ω ( F ) ) , γ > 0. {\displaystyle F^{*}:=\mathop {\text{arg min}} _{F}{\text{Obj}}(F)=\mathop {\text{arg min}} _{F}{\bigl (}L(F)+\gamma \Omega (F){\bigr )},\qquad \gamma >0.}

这里, Obj ( F ) {\displaystyle {\text{Obj}}(F)} 称为目标函数,它描述模型的结构风险; L ( F ) {\displaystyle L(F)} 是训练集上的损失函数; Ω ( F ) {\displaystyle \Omega (F)} 是正则项,描述模型的复杂程度; γ {\displaystyle \gamma } 是用于控制正则项重要程度的参数。正则项通常包括对光滑度及向量空间内范数上界的限制。 L p {\displaystyle L_{p}} -范数是一种常见的正则项。

在贝叶斯学派的观点(英语:Bayesian_interpretation_of_kernel_regularization)看来,正则项是在模型训练过程中引入了某种模型参数的先验分布。

所谓范数即是抽象之长度,通常意义上满足长度的三种性质:非负性、齐次性和三角不等式。

以函数的观点来看,范数是定义在 R n R {\displaystyle \mathbb {R} ^{n}\to \mathbb {R} } 的函数;并且它和损失函数类似,也具有下确界。后一性质是由范数的非负性和齐次性保证的。这一特性使得 L p {\displaystyle L_{p}} -范数天然适合做正则项,因为目标函数仍可用梯度下降等方式求解最优化问题。 L p {\displaystyle L_{p}} -范数作为正则项时被称为 L p {\displaystyle L_{p}} -正则项。

机器学习模型当中的参数,可形式化地组成参数向量,记为 ω {\displaystyle {\vec {\omega }}} 。不失一般性,以线性模型为例:

F ( x ; ω ) := ω x = i = 1 n ω i x i . {\displaystyle F({\vec {x}};{\vec {\omega }}):={\vec {\omega }}^{\intercal }\cdot {\vec {x}}=\sum _{i=1}^{n}\omega _{i}\cdot x_{i}.}

由于训练集当中统计噪声的存在,冗余的特征可能成为过拟合的一种来源。这是因为,对于统计噪声,模型无法从有效特征当中提取信息进行拟合,故而会转向冗余特征。为了对抗此类过拟合现象,人们会希望让尽可能多的 ω i {\displaystyle \omega _{i}} 为零。为此,最直观地,可以引入 L 0 {\displaystyle L_{0}} -正则项

Ω ( F ( x ; ω ) ) := γ 0 ω 0 n , γ 0 > 0. {\displaystyle \Omega {\bigl (}F({\vec {x}};{\vec {\omega }}){\bigr )}:=\gamma _{0}{\frac {\lVert {\vec {\omega }}\rVert _{0}}{n}},\;\gamma _{0}>0.}

通过引入 L 0 {\displaystyle L_{0}} -正则项,人们实际上是向优化过程引入了一种惩罚机制:当优化算法希望增加模型复杂度(此处特指将原来为零的参数 ω i {\displaystyle \omega _{i}} 更新为非零的情形)以降低模型的经验风险(即降低全局损失)时,在结构风险上进行大小为 γ 0 n {\displaystyle {\tfrac {\gamma _{0}}{n}}} 的惩罚。于是,当增加模型复杂度在经验风险上的收益不足 γ 0 n {\displaystyle {\tfrac {\gamma _{0}}{n}}} 时,整个结构风险实际上会增大而非减小。因此优化算法会拒绝此类更新。

引入 L 0 {\displaystyle L_{0}} -正则项可使模型参数稀疏化,以及使得模型易于解释。但 L 0 {\displaystyle L_{0}} -正则项也有无法避免的问题:非连续、非凸、不可微。因此,在引入 L 0 {\displaystyle L_{0}} -正则项的目标函数上做最优化求解,是一个无法在多项式时间内完成的问题。于是,人们转而考虑 L 0 {\displaystyle L_{0}} -范数的最紧凸放松—— L 1 {\displaystyle L_{1}} -范数,令

Ω ( F ( x ; ω ) ) := γ 1 ω 1 n , γ 1 > 0. {\displaystyle \Omega {\bigl (}F({\vec {x}};{\vec {\omega }}){\bigr )}:=\gamma _{1}{\frac {\lVert {\vec {\omega }}\rVert _{1}}{n}},\;\gamma _{1}>0.}

和引入 L 0 {\displaystyle L_{0}} -正则项的情况类似,引入 L 1 {\displaystyle L_{1}} -正则项是在结构风险上进行大小为 γ 1 | ω i | n {\displaystyle {\tfrac {\gamma _{1}|\omega _{i}|}{n}}} 的惩罚,以达到稀疏化的目的。

L 1 {\displaystyle L_{1}} -正则项亦称LASSO-正则项。

在发生过拟合时,模型的函数曲线往往会发生剧烈的弯折,这意味着模型函数在局部的切线之斜率非常高。一般地,函数的曲率是函数参数的线性组合或非线性组合。为了对抗此类过拟合,人们会希望使得这些参数的值相对稠密且均匀地集中在零附近。于是,人们引入了 L 2 {\displaystyle L_{2}} -范数,作为 L 2 {\displaystyle L_{2}} -正则项。令

Ω ( F ( x ; w ) ) := γ 2 ω 2 2 2 n , γ 2 > 0 , {\displaystyle \Omega {\bigl (}F({\vec {x}};{\vec {w}}){\bigr )}:=\gamma _{2}{\frac {\lVert {\vec {\omega }}\rVert _{2}^{2}}{2n}},\;\gamma _{2}>0,}

于是有目标函数

Obj ( F ) = L ( F ) + γ 2 ω 2 2 2 n , {\displaystyle {\text{Obj}}(F)=L(F)+\gamma _{2}{\frac {\lVert {\vec {\omega }}\rVert _{2}^{2}}{2n}},}

于是对于参数 ω i {\displaystyle \omega _{i}} 取偏微分

Obj ω i = L ω i + γ 2 n ω i . {\displaystyle {\frac {\partial {\text{Obj}}}{\partial \omega _{i}}}={\frac {\partial L}{\partial \omega _{i}}}+{\frac {\gamma _{2}}{n}}\omega _{i}.}

因此,在梯度下降时,参数 ω i {\displaystyle \omega _{i}} 的更新

ω i ω i η L ω i η γ 2 n ω i = ( 1 η γ 2 n ) ω i η L ω i . {\displaystyle \omega '_{i}\gets \omega _{i}-\eta {\frac {\partial L}{\partial \omega _{i}}}-\eta {\frac {\gamma _{2}}{n}}\omega _{i}={\Bigl (}1-\eta {\frac {\gamma _{2}}{n}}{\Bigr )}\omega _{i}-\eta {\frac {\partial L}{\partial \omega _{i}}}.}

注意到 η γ 2 n {\displaystyle \eta {\tfrac {\gamma _{2}}{n}}} 通常是介于 ( 0 , 1 ) {\displaystyle (0,\,1)} 之间的数, L 2 {\displaystyle L_{2}} -正则项会使得参数接近零,从而对抗过拟合。

L 2 {\displaystyle L_{2}} -正则项又称Tikhonov-正则项或Ringe-正则项。

提前停止可看做是时间维度上的正则化。直觉上,随着迭代次数的增加,如梯度下降这样的训练算法倾向于学习愈加复杂的模型。在实践维度上进行正则化有助于控制模型复杂度,提升泛化能力。在实践中,提前停止一般是在训练集上进行训练,而后在统计上独立的验证集上进行评估;当模型在验证集上的性能不在提升时,就提前停止训练。最后,可在测试集上对模型性能做最后测试。

相关

  • 诱导凋亡因子凋亡诱导因子(英语:Apoptosis-inducing factor,简称为AIF)是一类进化保守的黄素蛋白。凋亡诱导因子涉及到非胱天蛋白酶依赖型细胞凋亡途径的引发,可以使得细胞的染色体凝聚及DNA
  • 乔治王时代乔治王时代(Georgian era),指大不列颠王国汉诺威王朝1714年-1837年的一段时期,期间四位名为乔治的国王,即乔治一世、乔治二世、乔治三世和乔治四世连续在位时间,其中1811年至1820年
  • 建州右卫建州三卫是中国明代为统治东北建州女真所居地区而设立的三个卫,包括建州卫、建州左卫、建州右卫,其首领大多为女真族世袭领袖。其中建州卫建于明成祖永乐元年(1403年),以胡里改部
  • 大观义学大观义学位于台湾新北市板桥区,是板桥林本源家族为了促进漳泉和谐而成立的书院。该建筑于1985年8月19日公告为三级古迹,现为新北市的直辖市定古迹。目前大观义学同时也是大观
  • 约翰·兰辛约翰·兰辛(John Ten Eyck Lansing, Jr.,1754年1月30日-1829年12月12日),美国建国时期的政治人物、律师,纽约州人。1776年—1777年独立战争期间曾是菲利普·斯凯勒的军事秘书。进
  • 市镇 (法国)市镇(法语:commune)是法国最基层的行政区划,一个市镇一般对应于一个村或镇。它们的面积,特别是人口有时相差悬殊(人口最多的巴黎拥有两百万以上的居民,而最少的只有一人)。目前法国
  • 路易十七路易十七(法语:Louis XVII,1785年3月27日-1795年6月8日),出生名路易-夏尔(法语:Louis-Charles),是路易十六和他的王后玛丽·安托瓦内特特的第二个儿子。他出生后被封为诺曼底公爵。178
  • 系统重要性金融机构系统重要性金融机构(Systemically Important Financial Institution, SIFI) 是自身失控可能导致全球金融危机的银行,保险公司或其他金融机构。在2007年-2012年环球金融危机发
  • 阴茎移植阴茎移植,指将阴茎移植于患者身体上的外科手术。阴茎供体可能是捐赠,或者人工生长(尚未临床应用)。全球首例成功的阴茎移植于2006年9月在中国广州完成。患者是一名44岁的男性,因
  • 前陆盆地前陆盆地是一个与造山带相邻,并且平行发展的构造盆地。由于造山运动使得地壳增厚,巨大的重量让岩石圈弯曲,使得前陆盆地产生,这也是大家熟悉的地壳均衡。前陆盆地的宽度与深度取