正则化 (数学)

✍ dations ◷ 2025-06-29 17:12:12 #机器学习,计算机科学

在数学与计算机科学中,尤其是在机器学习和逆问题领域中,正则化(英语:regularization)是指为解决适定性问题或过拟合而加入额外信息的过程。

在机器学习和逆问题的优化过程中,正则项往往被加在目标函数当中。

概括来讲,机器学习的训练过程,就是要找到一个足够好的函数 F {\displaystyle F^{*}} 用以在新的数据上进行推理。为了定义什么是“好”,人们引入了损失函数的概念。一般地,对于样本 ( x , y ) {\displaystyle ({\vec {x}},y)} 和模型 F {\displaystyle F} ,有预测值 y ^ = F ( x ) {\displaystyle {\hat {y}}=F({\vec {x}})} 。损失函数是定义在 R × R R {\displaystyle \mathbb {R} \times \mathbb {R} \to \mathbb {R} } 上的二元函数 ( y , y ^ ) {\displaystyle \ell (y,{\hat {y}})} ,用来描述基准真相和模型预测值之间的差距。一般来说,损失函数是一个有下确界的函数;当基准真相和模型预测值足够接近,损失函数的值也会接近该下确界。

因此,机器学习的训练过程可以被转化为训练集 D {\displaystyle {\mathcal {D}}} 上的最小化问题。我们的目标是在泛函空间内,找到使得全局损失 L ( F ) = i D ( y i , y ^ i ) {\displaystyle L(F)=\sum _{i\in {\mathcal {D}}}\ell (y_{i},{\hat {y}}_{i})} 最小的模型 F {\displaystyle F^{*}}

F := arg min F L ( F ) . {\displaystyle F^{*}:=\mathop {\text{arg min}} _{F}L(F).}

由于损失函数只考虑在训练集上的经验风险,这种做法可能会导致过拟合。为了对抗过拟合,我们需要向损失函数中加入描述模型复杂程度的正则项 Ω ( F ) {\displaystyle \Omega (F)} ,将经验风险最小化问题转化为结构风险最小化。

F := arg min F Obj ( F ) = arg min F ( L ( F ) + γ Ω ( F ) ) , γ > 0. {\displaystyle F^{*}:=\mathop {\text{arg min}} _{F}{\text{Obj}}(F)=\mathop {\text{arg min}} _{F}{\bigl (}L(F)+\gamma \Omega (F){\bigr )},\qquad \gamma >0.}

这里, Obj ( F ) {\displaystyle {\text{Obj}}(F)} 称为目标函数,它描述模型的结构风险; L ( F ) {\displaystyle L(F)} 是训练集上的损失函数; Ω ( F ) {\displaystyle \Omega (F)} 是正则项,描述模型的复杂程度; γ {\displaystyle \gamma } 是用于控制正则项重要程度的参数。正则项通常包括对光滑度及向量空间内范数上界的限制。 L p {\displaystyle L_{p}} -范数是一种常见的正则项。

在贝叶斯学派的观点(英语:Bayesian_interpretation_of_kernel_regularization)看来,正则项是在模型训练过程中引入了某种模型参数的先验分布。

所谓范数即是抽象之长度,通常意义上满足长度的三种性质:非负性、齐次性和三角不等式。

以函数的观点来看,范数是定义在 R n R {\displaystyle \mathbb {R} ^{n}\to \mathbb {R} } 的函数;并且它和损失函数类似,也具有下确界。后一性质是由范数的非负性和齐次性保证的。这一特性使得 L p {\displaystyle L_{p}} -范数天然适合做正则项,因为目标函数仍可用梯度下降等方式求解最优化问题。 L p {\displaystyle L_{p}} -范数作为正则项时被称为 L p {\displaystyle L_{p}} -正则项。

机器学习模型当中的参数,可形式化地组成参数向量,记为 ω {\displaystyle {\vec {\omega }}} 。不失一般性,以线性模型为例:

F ( x ; ω ) := ω x = i = 1 n ω i x i . {\displaystyle F({\vec {x}};{\vec {\omega }}):={\vec {\omega }}^{\intercal }\cdot {\vec {x}}=\sum _{i=1}^{n}\omega _{i}\cdot x_{i}.}

由于训练集当中统计噪声的存在,冗余的特征可能成为过拟合的一种来源。这是因为,对于统计噪声,模型无法从有效特征当中提取信息进行拟合,故而会转向冗余特征。为了对抗此类过拟合现象,人们会希望让尽可能多的 ω i {\displaystyle \omega _{i}} 为零。为此,最直观地,可以引入 L 0 {\displaystyle L_{0}} -正则项

Ω ( F ( x ; ω ) ) := γ 0 ω 0 n , γ 0 > 0. {\displaystyle \Omega {\bigl (}F({\vec {x}};{\vec {\omega }}){\bigr )}:=\gamma _{0}{\frac {\lVert {\vec {\omega }}\rVert _{0}}{n}},\;\gamma _{0}>0.}

通过引入 L 0 {\displaystyle L_{0}} -正则项,人们实际上是向优化过程引入了一种惩罚机制:当优化算法希望增加模型复杂度(此处特指将原来为零的参数 ω i {\displaystyle \omega _{i}} 更新为非零的情形)以降低模型的经验风险(即降低全局损失)时,在结构风险上进行大小为 γ 0 n {\displaystyle {\tfrac {\gamma _{0}}{n}}} 的惩罚。于是,当增加模型复杂度在经验风险上的收益不足 γ 0 n {\displaystyle {\tfrac {\gamma _{0}}{n}}} 时,整个结构风险实际上会增大而非减小。因此优化算法会拒绝此类更新。

引入 L 0 {\displaystyle L_{0}} -正则项可使模型参数稀疏化,以及使得模型易于解释。但 L 0 {\displaystyle L_{0}} -正则项也有无法避免的问题:非连续、非凸、不可微。因此,在引入 L 0 {\displaystyle L_{0}} -正则项的目标函数上做最优化求解,是一个无法在多项式时间内完成的问题。于是,人们转而考虑 L 0 {\displaystyle L_{0}} -范数的最紧凸放松—— L 1 {\displaystyle L_{1}} -范数,令

Ω ( F ( x ; ω ) ) := γ 1 ω 1 n , γ 1 > 0. {\displaystyle \Omega {\bigl (}F({\vec {x}};{\vec {\omega }}){\bigr )}:=\gamma _{1}{\frac {\lVert {\vec {\omega }}\rVert _{1}}{n}},\;\gamma _{1}>0.}

和引入 L 0 {\displaystyle L_{0}} -正则项的情况类似,引入 L 1 {\displaystyle L_{1}} -正则项是在结构风险上进行大小为 γ 1 | ω i | n {\displaystyle {\tfrac {\gamma _{1}|\omega _{i}|}{n}}} 的惩罚,以达到稀疏化的目的。

L 1 {\displaystyle L_{1}} -正则项亦称LASSO-正则项。

在发生过拟合时,模型的函数曲线往往会发生剧烈的弯折,这意味着模型函数在局部的切线之斜率非常高。一般地,函数的曲率是函数参数的线性组合或非线性组合。为了对抗此类过拟合,人们会希望使得这些参数的值相对稠密且均匀地集中在零附近。于是,人们引入了 L 2 {\displaystyle L_{2}} -范数,作为 L 2 {\displaystyle L_{2}} -正则项。令

Ω ( F ( x ; w ) ) := γ 2 ω 2 2 2 n , γ 2 > 0 , {\displaystyle \Omega {\bigl (}F({\vec {x}};{\vec {w}}){\bigr )}:=\gamma _{2}{\frac {\lVert {\vec {\omega }}\rVert _{2}^{2}}{2n}},\;\gamma _{2}>0,}

于是有目标函数

Obj ( F ) = L ( F ) + γ 2 ω 2 2 2 n , {\displaystyle {\text{Obj}}(F)=L(F)+\gamma _{2}{\frac {\lVert {\vec {\omega }}\rVert _{2}^{2}}{2n}},}

于是对于参数 ω i {\displaystyle \omega _{i}} 取偏微分

Obj ω i = L ω i + γ 2 n ω i . {\displaystyle {\frac {\partial {\text{Obj}}}{\partial \omega _{i}}}={\frac {\partial L}{\partial \omega _{i}}}+{\frac {\gamma _{2}}{n}}\omega _{i}.}

因此,在梯度下降时,参数 ω i {\displaystyle \omega _{i}} 的更新

ω i ω i η L ω i η γ 2 n ω i = ( 1 η γ 2 n ) ω i η L ω i . {\displaystyle \omega '_{i}\gets \omega _{i}-\eta {\frac {\partial L}{\partial \omega _{i}}}-\eta {\frac {\gamma _{2}}{n}}\omega _{i}={\Bigl (}1-\eta {\frac {\gamma _{2}}{n}}{\Bigr )}\omega _{i}-\eta {\frac {\partial L}{\partial \omega _{i}}}.}

注意到 η γ 2 n {\displaystyle \eta {\tfrac {\gamma _{2}}{n}}} 通常是介于 ( 0 , 1 ) {\displaystyle (0,\,1)} 之间的数, L 2 {\displaystyle L_{2}} -正则项会使得参数接近零,从而对抗过拟合。

L 2 {\displaystyle L_{2}} -正则项又称Tikhonov-正则项或Ringe-正则项。

提前停止可看做是时间维度上的正则化。直觉上,随着迭代次数的增加,如梯度下降这样的训练算法倾向于学习愈加复杂的模型。在实践维度上进行正则化有助于控制模型复杂度,提升泛化能力。在实践中,提前停止一般是在训练集上进行训练,而后在统计上独立的验证集上进行评估;当模型在验证集上的性能不在提升时,就提前停止训练。最后,可在测试集上对模型性能做最后测试。

相关

  • 奈良县立医科大学奈良县立医科大学(日语:奈良県立医科大学,英语:Nara Medical University)是位于日本奈良县的一所公立大学,成立于1945年,简称为奈县医、奈良医大或县立医大。1945年奈良县立医学专
  • 队报队报(法语原文:L'Équipe,意为“队伍、团队”),是一份法国的知名体育性报纸,其所有者为出版集团“Éditions Philippe Amaury”(简称为EPA)。该报纸以在足球、橄榄球、赛车及自行车
  • 信史商朝(约公元前1600年) 已经开始是信史年代。而夏朝作为中国历史上第一个朝代虽多见于后世史书,亦有同时期的文物遗迹出土,但至今尚未发现同时期的文字记载,故夏代并未出现信史,
  • 特伦特大学坐标:44°21′27.95″N 78°17′22.42″W / 44.3577639°N 78.2895611°W / 44.3577639; -78.2895611加拿大特伦特大学(英语:Trent University)又称:川特大学,于1964年正式建校,并
  • 大觉寺统大觉寺统是镰仓时代后期日本皇室的一个家族,与另一支家族持明院统形成对立局面。后嵯峨天皇禅位予其子后深草天皇,又反悔,逼退了后深草天皇,立了另外一位爱子亀山天皇,后深草天皇
  • 水运仪象台水运仪象台,由北宋苏颂发明的自动化机械化天文演示装置。元祐元年(1086年)苏颂检验太史局的浑仪时,决心要将浑仪、浑象和报时装置结合。苏颂拜访吏部守当官韩公廉,取得张衡、张思
  • 打狗公学校高雄市立旗津国民小学,简称旗津国小,位在高雄市旗津区,前身是日治时期的打狗公学校,是高雄市最早的新式初等教育设施。其旧校舍是高雄市的市定古迹。1897年,日本人的打狗俱乐部捐
  • 半岛晨报《半岛晨报》是在大连出版发行的一份省级都市类日报,由辽宁日报传媒集团创办,1998年1月1日正式创刊。主要发行范围是大连全市(包括北三市及长海县)。初期4开8版,后扩展到日均4开7
  • 吴道子吴道子(685年-758年:141),又称吴道元,字道子,后改名为道玄,画史尊称“吴生”。阳翟(今河南禹县)人。中国唐代著名画家,被称为“百代画圣”。出生年份没有记载。吴道子幼年家境贫寒,初为
  • X及Y玻色子在粒子物理学中,X及Y玻色子(或有时合称为X玻色子)是一种假想基本粒子,与W及Z玻色子类似,但它们传递的是一种全新的力,而这种力是由乔吉-格拉肖模型所预测的,它是一套大统一理论。X