盲信号分离

✍ dations ◷ 2025-02-23 22:28:00 #统计力学,信号处理,奇异值分解,矩阵分析

盲信号分离(信号分离,盲信号源分离)指的是从多个观测到的混合信号中分析出没有观测的原始信号。通常观测到的混合信号来自多个传感器的输出,并且传感器的输出信号独立(线性不相关)。盲信号的“盲”字强调了两点:1)原始信号并不知道;2)对于信号混合的方法也不知道。最常用在的领域是在数字信号处理,且牵涉到对混合讯号的分析。盲信号分离最主要的目标就是将原始的信号还原出原始单一的讯号。一个经典的例子是鸡尾酒会效应,当许多人一起在同一个空间里说话的时候,听者可以专注于某一个人说的话上,人类的大脑可以即时处理这类的语音讯号分离问题,但是在数位语音处理里,这个问题还是一个困难的问题。

盲信号分离在早期时集中于研究时间讯号,像是声音,然而,盲信号分离目前已经可以应用在多维度的资料上,例如图片和张量这类不含时间维度的数据。

这个问题到目前为止还没有很好的解决方案,但是在一些特定的情况下,有一些很有用的解决方式。例如,当时间没有延迟的时候,我们可以采用主成分分析或独立成分分析。尽管这个问题已经有许多解决方式,科学家们仍然在持续对其进行研究。

如果可以对信号混合的方式直接建模,当然是最好的方法。但是,在盲信号分离中我们并不知道,信号混合的方式,所以,只能采用统计的方法。算法做出了如下的假定:

具有 m {\displaystyle m} 个独立的信号源 s 1 ( t ) , . . . , s m ( t ) {\displaystyle s_{1}(t),...,s_{m}(t)} n {\displaystyle n} 个独立的观察量 x 1 ( t ) , . . . , x n ( t ) {\displaystyle x_{1}(t),...,x_{n}(t)} ,观察量和信号源具有如下的关系

x ( t ) = A s ( t ) {\displaystyle \mathbf {x} (t)=A\mathbf {s} (t)}

其中 x ( t ) = T {\displaystyle \mathbf {x} (t)={}^{T}} , s ( t ) = T {\displaystyle \mathbf {s} (t)={}^{T}} , A {\displaystyle A} 是一个 n × m {\displaystyle {n}\times {m}} 的系数矩阵,原问题变成了已知 x ( t ) {\displaystyle \mathbf {x} (t)} s ( t ) {\displaystyle \mathbf {s} (t)} 的独立性,求对 s ( t ) {\displaystyle \mathbf {s} (t)} 的估计问题。假定有如下公式

y ( t ) = W x ( t ) {\displaystyle \mathbf {y} (t)=W\mathbf {x} (t)}

其中 y ( t ) {\displaystyle \mathbf {y} (t)} 是对 s ( t ) {\displaystyle \mathbf {s} (t)} 的估计,W是一个 m × n {\displaystyle {m}\times {n}} 系数矩阵,问题变成了如何有效的对矩阵W做出估计。

1)各源信号 s i ( t ) {\displaystyle s_{i}(t)} 均为零均值信号,实随机变量,信号之间统计独立。如果源信号 s i ( t ) {\displaystyle s_{i}(t)} 的概率密度为 p i ( s i ) {\displaystyle p_{i}(s_{i})} ,则 s ( t ) {\displaystyle s(t)} 的概率密度为: p ( s ) = i = 1 n p i ( s i ) {\displaystyle p(s)=\prod _{i=1}^{n}p_{i}(s_{i})}

2)源信号数目 m {\displaystyle m} 小于等于观察信号数目 n {\displaystyle n} ,即 m <= n {\displaystyle m<=n} 。混合矩阵 A {\displaystyle A} 是一个 n × m {\displaystyle n\times {m}} 的矩阵。假定 A {\displaystyle A} 满秩。

3)源信号中只允许有一个高斯分布,当多于一个高斯分布时,源信号变得不可分。

自然梯度法的计算公式为: W ( n + 1 ) = W ( n ) + η ( n ) W ( n ) {\displaystyle W(n+1)=W(n)+\eta (n)W(n)}

其中 W {\displaystyle W} 为我们需要估计的矩阵。 η ( n ) {\displaystyle \eta (n)} 为步长, ϕ ( y ) {\displaystyle \phi (y)} 是一个非线性变换,比如 ϕ ( y ) = ϕ ( y 3 ) {\displaystyle \phi (y)=\phi (y^{3})}

实际计算时y为一个 m × k {\displaystyle m\times k} 矩阵,m为原始信号个数,k为采样点个数

1)初始化W(0)为单位矩阵

2)循环执行如下的步骤,直到W(n+1)与W(n)差异小于规定值 τ {\displaystyle \tau } (计算矩阵差异的方法可以人为规定),有时候也人为规定迭代次数

3)利用公式 y ( n ) = W ( n ) y ( n 1 ) {\displaystyle y(n)=W(n)y(n-1)} ,(其中 y ( 1 ) = x {\displaystyle y(-1)=x} )

4)利用公式 W ( n + 1 ) = W ( n ) + η ( n ) W ( n ) {\displaystyle W(n+1)=W(n)+\eta (n)W(n)}

在信号分离的方法中,大部分的论文都是利用短时距傅立叶变换,将声音转换成时频谱,且会用梅尔刻度,模仿人耳对等距音高变化的感官,来做到抽样频率的减少,最后再从混和信号的时频谱中找出由一个信号源所发出干净的单一讯号的时频谱,用反短时距傅立叶转换找出单一讯号的声音。有一部分的论文是用非线性回归的技术来找出,而说到经典的作法,就要提到这篇论文,要解决的是盲信号分离,作法是将时频谱的抽样时刻和频率,利用神经网络和集群来分成不同群,每一群代表的是哪一个讲话者在那个抽样里占了最大的比例,这种方法称为"deep clustering",有许多论文\都是在这上面做延伸。

然而利用时频谱来作为讯号的特征有几项缺点:

这些问题都发生在用时频谱来做讯号分离,而最直觉的解决方式就是直接在时域上做,这样就可以避免将声音的大小声和相位做分离。其中表现的最好的就是Conv-Tasnet这个方法,Conv-Tasnet可分为三个区块,编码器(encoder)、分离器(separator)和解码器(decoder),编码器将一小段的混和讯换转换为在特征空间(feature space)上的特征向量,借由这个特征向量,分离器要找出一个相对应的遮罩(mask),将特征向量和遮罩做相乘后,再用解码器将其转换为原始讯号源所发出的单一讯号。

盲信号分离最早由Herault和Jutten在1985年提出,发表在一篇法文杂志上。随后他们相继发表文章对盲信号问题做出分析,提出了一种自适应的方法。其他一些学者对他们的方法进行了分析,分析了他们提出的方法的稳定性,在他们工作的基础上,引入了神经网络的方法对盲信号进行分离,并对其稳定性进行了分析。

相关

  • 尿液尿,又称尿液,是人类和脊椎动物为了新陈代谢的需要,经由泌尿系统及尿路排出体外的液体排泄物。排出的尿液可调节机体内水和电解质的平衡以及清除代谢废物且可同时散热,尤其是退化
  • 商品名商业名称(trade name, trading name, or business name),又称为商号、交易名称或营业名称等,是企业在从事商业活动时所使用的名称,功能类似于品牌。可指企业名、商品名或商标名等
  • 药品效应动力学药物效应动力学(英语:Pharmacodynamics (PD) ),简称药效学,是药理学的一个分支,主要研究药物作用(action)与药理效应(effects)(即药物对机体的作用及作用机制(mechanism of action)
  • 1054年重要事件及趋势重要人物
  • 大法院外交 · 南北统一 · 阳光政策 · 行政区划 · 人权(朝鲜语:대한민국의 인권)政治主题大韩民国大法院(韩语:대한민국 대법원)是大韩民国的最高法院,位于首尔瑞草区。大法院由大
  • 环烷环'"`UNIQ--templatestyles-00000001-QINU`"' 烷(wán) 烃(tīng),属于有机化合物,因为仅由氢(H)和碳(C)组成,故又属于烃类。又,因为其仅由单键连接,故又属于烷类。再,因为其构成如环状,故
  • 布拉格之春苏联获胜200,000 / 600,000 = 30个师 (全军覆灭)布拉格之春(捷克语:Pražské jaro;斯洛伐克语:Pražská jar;俄语:пражская весна)是1968年1月5日开始的捷克斯洛伐克
  • 北仑区北仑区是中国浙江省宁波市下辖的一个区。陆地面积599.03平方千米,人口38.01万。邮政编码315800。区人民政府驻新碶街道长江路1166号北仑行政大楼A座。北仑区原为镇海县的一部
  • 2012年8月逝世人物列表2012年8月逝世人物列表,是用于汇总2012年8月期间逝世人物的列表。
  • 周传雄周传雄(英语:Steve Chou Chuan-huing,1969年6月7日-),艺名小刚,台湾知名男歌手、音乐制作人。出生于台中神冈,新北东南工专毕业。1987年,以艺名“小刚”闯荡歌坛,走偶像歌手路线。1988