3DNow!

✍ dations ◷ 2025-11-26 00:42:41 #并行计算,微处理器,AMD处理器,X86架构

3DNow!(据说是“3D No Waiting!”的缩写)是由AMD开发的一套SIMD多媒体指令集,支持单精度浮点数的矢量运算,用于增强x86架构的电脑在三维图像处理上的性能。

1996年Intel首先推出了支持MMX的Pentium处理器,极大地提高了CPU处理多媒体数据的能力,被广泛地应用于语音合成、语音识别、音频视频编解码、图像处理和串流媒体等领域。但是MMX只支持整数运算,浮点数运算仍然要使用传统的x87协处理器指令。由于MMX与x87的寄存器相互重叠,在MMX代码中插入x87指令时必须先执行指令清除MMX状态,频繁地切换状态将严重影响性能。这限制了MMX指令在需要大量浮点运算的程序,如三维几何变换、裁剪和投影中的应用。

另一方面,由于x87古怪的堆栈式暂存器结构,使得硬件上将其流水线化和软件上合理调度指令都很困难,这成为提高x86架构浮点性能的一个瓶颈。

为了解决以上这两个问题,AMD公司于1998年推出了包含21条指令的3DNow!指令集,并在其K6-2处理器中实现。K6-2是第一个能执行浮点SIMD指令的x86处理器,也是第一个支持水平浮点寄存器模型的x86处理器。借助3DNow!,K6-2实现了x86处理器上最快的浮点单元,在每个时钟周期内最多可得到4个单精度浮点数结果,是传统x87协处理器的4倍。许多游戏厂商为3DNow!优化了程序,微软的DirectX 7也为3DNow!做了优化,AMD处理器的游戏性能第一次超过Intel,这大大提升了AMD在消费者心目中的地位。K6-2和随后的K6-III成为市场上的热门货。

1999年,随着Athlon处理器的推出,AMD为3DNow!增加了5条新的指令,用于增强其在DSP方面的性能,它们被称为“扩展3DNow!”(Extended 3DNow!)。

为了对抗3DNow!,Intel公司于1999年推出了SSE指令集。SSE几乎能提供3DNow!的所有功能,而且能在一条指令中处理两倍多的单精度浮点数;同时,SSE完全支持IEEE 754,在处理单精度浮点数时可以完全代替x87。这迅速瓦解了3DNow!的优势。

1999年后,随着主流操作系统和软件都开始支持SSE并为SSE优化,AMD在其2000年发布的代号为“Thunderbird”的Athlon处理器中添加了对SSE的完全支持(“经典”的Athlon或K7只支持SSE中与MMX有关的部分,AMD称之为“扩展MMX”即Extended MMX)。随后,AMD致力于AMD64架构的开发;在SIMD指令集方面,AMD跟随Intel,为自己的处理器添加SSE2和SSE3支持,而不再改进3DNow!。

2010年八月,AMD宣布将在新一代处理器中取消除了两条数据预取指令之外3DNow!指令的支持,并鼓励开发者将3DNow!代码重新用SSE实现。

支持3DNow!的CPU的CPUID扩展功能字(EAX=80000001h时执行CPUID指令得到的EDX的内容)的(从低位到高位)第31位为1。支持扩展3DNow!的CPU的CPUID扩展功能字的(从低位到高位)第30位为1。

K6-2至K10之间AMD所有的x86处理器都支持3DNow!,包括Athlon 64、Opteron和Sempron处理器;AMD将3DNow!从Ryzen、AMD FX处理器移除;Cyrix等一些其他厂家生产的某些处理器也支持3DNow!;但Intel生产的所有处理器都不支持3DNow!。

3DNow!指令的执行环境与MMX一样,都是将8个x87寄存器ST0~ST7的低64位重命名为MMX寄存器MM0~MM7,并依平坦模式进行操作(即指令可以任意访问这8个寄存器中的任何一个而不必使用堆栈)。

由于3DNow!使用的寄存器与x87寄存器重叠,任务切换时,保存x87寄存器状态的同时也保存了3DNow!的状态,所以3DNow!不需要操作系统的额外支持。只要CPU支持3DNow!,含有3DNow!代码的程序可以在只考虑到x87状态的原有的操作系统上不加修改地运行。

由于3DNow!依平坦模式访问寄存器,对3DNow!浮点单元的管线化变得容易,这也利于编译器生成高效的浮点代码。

3DNow!和扩展3DNow!的26条指令从功能上可以分为以下五类。

此类指令的操作数均为64位,其高32位和低32位分别是IEEE 754格式的单精度浮点数。大部分指令一次可接受两个这样的操作数,并得到两个单精度浮点数的结果。它们的汇编语言助记符都以开头。

3DNow!还包含有计算单精度倒数和开方倒数的指令,并可以依程序需要,得到12位精度和24位精度的结果。这些指令一次只能处理一个单精度浮点数。

3DNow!的一个特色是可以将同一寄存器内的64位操作数中的两个单精度浮点数相加或相乘,这在复数运算和内积运算中非常有用。Intel直到最近才在SSE3指令集中增加了这项功能,称之为“”。

为了保证与旧有操作系统的兼容性,与MMX指令一样,3DNow!指令不引发任何算术异常。3DNow!指令不会生成也不能正确处理NaN和非规格化数,也不支持指定舍入模式。因此3DNow!并不是IEEE 754的一个完整实现,即使是只涉及单精度浮点数时也不能完全代替x87。

用于求64位紧缩字节(8×8位字节)的平均值,可用于视频编码中的像素平均和图像缩放等。可能是意识到这个功能的重要性,Intel在SSE中添加了功能完全相同的指令。

则用来补充MMX指令的不足,在紧缩字(4×16位字)相乘时可以得到比后者更准确的结果。Intel直到最近才在SSSE3中增加了功能相似的指令。

指令用于交换紧缩双字(2×32位字)中两个双字数据的位置。

、等4条指令用于完成整数和单精度浮点数之间的相互转换。

指令用于把将要使用到的数据从主内存提前载入快取中,以减少访问主内存的指令执行时的延迟。Intel在SSE中添加了类似的指令

指令与MMX中的功能相同,用于退出MMX状态。在K6-2和K6-III处理器中,比更快;在Athlon及更新的处理器中,等同于。

相关

  • ddTTP双脱氧核苷酸(英语:Dideoxynucleotide)是DNA聚合酶的链终止性抑制剂,应用于DNA测序桑格法。这些核苷酸亦被称为2',3'-双脱氧核苷酸,常被简写为ddNTPs(ddGTP、ddATP、ddTTP与ddCTP)
  • 齐克隆B齐克隆B(Zyklon B或Cyclon B),是以氰化物为基的消毒熏蒸剂和杀虫剂,在第二次世界大战期间被纳粹德国用于执行种族灭绝作战。其前身齐克隆A(Zyklon A)系氰基甲酸甲酯与10%氯甲酸甲
  • span class=nowrapCu(ClOsub4/sub)sub2/sub/spa高氯酸铜是一种化学物质,是铜的高氯酸盐。其分子式为Cu(ClO4)2,易溶于水。高氯酸铜可通过如下反应制取:C u 2
  • 保罗·塞尔瓦保罗·约瑟夫·塞尔瓦(英语:Paul Joseph Selva),美国空军上将,现为第10任美国参谋长联席会议副主席,之前曾任美国运输司令部司令,2015年7月31日就任现职。
  • 罗马战役史从前8世纪意大利半岛的一个小城邦,到逐步征服北非、南欧、西欧以及近东地区,成为名副其实的“地中海帝国”,直至最终分崩离析,古罗马的政治史与其军事史密切相关。从王国及共和
  • 急就章《急就章》又名《急就篇》,汉朝史游著。汉元帝时黄门令史游作《急就章》,全文共一千三百九十四字,无一重复字,为学童识字之书。“石敢当”的文字记载最早见于《急就章》:“师猛虎
  • 杜尚·阿利姆皮奇杜尚·阿利姆皮奇(塞尔维亚-克罗地亚语:;塞尔维亚语:Душан Алимпић;1921年1月4日-2002年9月17日),塞尔维亚族,是南斯拉夫的党和国家领导人,南斯拉夫共产主义者联盟中央主
  • 特伦特·洛特特伦特·洛特(Trent Lott;1941年10月9日-)是美国的一位政治人物。在1999年至2007年期间,他是密西西比州的两位参议院议员之一。在1972年之前,他是一位民主党党员。但在1972年之后,
  • 全国青少年科技创新大赛全国青少年科技创新大赛(简称:CASTIC)是中华人民共和国一项具有逾30年历史的全国性青少年科技竞赛活动,由中国科学技术协会、中华人民共和国教育部等组织举办,面向全国中小学生和
  • 岛根县立护理短期大学岛根县立护理短期大学(日语:島根県立看護短期大学/しまねけんりつかんごたんきだいがく  *)是一所位于日本岛根县出云市的公立短期大学。