3DNow!

✍ dations ◷ 2025-10-25 08:06:04 #并行计算,微处理器,AMD处理器,X86架构

3DNow!(据说是“3D No Waiting!”的缩写)是由AMD开发的一套SIMD多媒体指令集,支持单精度浮点数的矢量运算,用于增强x86架构的电脑在三维图像处理上的性能。

1996年Intel首先推出了支持MMX的Pentium处理器,极大地提高了CPU处理多媒体数据的能力,被广泛地应用于语音合成、语音识别、音频视频编解码、图像处理和串流媒体等领域。但是MMX只支持整数运算,浮点数运算仍然要使用传统的x87协处理器指令。由于MMX与x87的寄存器相互重叠,在MMX代码中插入x87指令时必须先执行指令清除MMX状态,频繁地切换状态将严重影响性能。这限制了MMX指令在需要大量浮点运算的程序,如三维几何变换、裁剪和投影中的应用。

另一方面,由于x87古怪的堆栈式暂存器结构,使得硬件上将其流水线化和软件上合理调度指令都很困难,这成为提高x86架构浮点性能的一个瓶颈。

为了解决以上这两个问题,AMD公司于1998年推出了包含21条指令的3DNow!指令集,并在其K6-2处理器中实现。K6-2是第一个能执行浮点SIMD指令的x86处理器,也是第一个支持水平浮点寄存器模型的x86处理器。借助3DNow!,K6-2实现了x86处理器上最快的浮点单元,在每个时钟周期内最多可得到4个单精度浮点数结果,是传统x87协处理器的4倍。许多游戏厂商为3DNow!优化了程序,微软的DirectX 7也为3DNow!做了优化,AMD处理器的游戏性能第一次超过Intel,这大大提升了AMD在消费者心目中的地位。K6-2和随后的K6-III成为市场上的热门货。

1999年,随着Athlon处理器的推出,AMD为3DNow!增加了5条新的指令,用于增强其在DSP方面的性能,它们被称为“扩展3DNow!”(Extended 3DNow!)。

为了对抗3DNow!,Intel公司于1999年推出了SSE指令集。SSE几乎能提供3DNow!的所有功能,而且能在一条指令中处理两倍多的单精度浮点数;同时,SSE完全支持IEEE 754,在处理单精度浮点数时可以完全代替x87。这迅速瓦解了3DNow!的优势。

1999年后,随着主流操作系统和软件都开始支持SSE并为SSE优化,AMD在其2000年发布的代号为“Thunderbird”的Athlon处理器中添加了对SSE的完全支持(“经典”的Athlon或K7只支持SSE中与MMX有关的部分,AMD称之为“扩展MMX”即Extended MMX)。随后,AMD致力于AMD64架构的开发;在SIMD指令集方面,AMD跟随Intel,为自己的处理器添加SSE2和SSE3支持,而不再改进3DNow!。

2010年八月,AMD宣布将在新一代处理器中取消除了两条数据预取指令之外3DNow!指令的支持,并鼓励开发者将3DNow!代码重新用SSE实现。

支持3DNow!的CPU的CPUID扩展功能字(EAX=80000001h时执行CPUID指令得到的EDX的内容)的(从低位到高位)第31位为1。支持扩展3DNow!的CPU的CPUID扩展功能字的(从低位到高位)第30位为1。

K6-2至K10之间AMD所有的x86处理器都支持3DNow!,包括Athlon 64、Opteron和Sempron处理器;AMD将3DNow!从Ryzen、AMD FX处理器移除;Cyrix等一些其他厂家生产的某些处理器也支持3DNow!;但Intel生产的所有处理器都不支持3DNow!。

3DNow!指令的执行环境与MMX一样,都是将8个x87寄存器ST0~ST7的低64位重命名为MMX寄存器MM0~MM7,并依平坦模式进行操作(即指令可以任意访问这8个寄存器中的任何一个而不必使用堆栈)。

由于3DNow!使用的寄存器与x87寄存器重叠,任务切换时,保存x87寄存器状态的同时也保存了3DNow!的状态,所以3DNow!不需要操作系统的额外支持。只要CPU支持3DNow!,含有3DNow!代码的程序可以在只考虑到x87状态的原有的操作系统上不加修改地运行。

由于3DNow!依平坦模式访问寄存器,对3DNow!浮点单元的管线化变得容易,这也利于编译器生成高效的浮点代码。

3DNow!和扩展3DNow!的26条指令从功能上可以分为以下五类。

此类指令的操作数均为64位,其高32位和低32位分别是IEEE 754格式的单精度浮点数。大部分指令一次可接受两个这样的操作数,并得到两个单精度浮点数的结果。它们的汇编语言助记符都以开头。

3DNow!还包含有计算单精度倒数和开方倒数的指令,并可以依程序需要,得到12位精度和24位精度的结果。这些指令一次只能处理一个单精度浮点数。

3DNow!的一个特色是可以将同一寄存器内的64位操作数中的两个单精度浮点数相加或相乘,这在复数运算和内积运算中非常有用。Intel直到最近才在SSE3指令集中增加了这项功能,称之为“”。

为了保证与旧有操作系统的兼容性,与MMX指令一样,3DNow!指令不引发任何算术异常。3DNow!指令不会生成也不能正确处理NaN和非规格化数,也不支持指定舍入模式。因此3DNow!并不是IEEE 754的一个完整实现,即使是只涉及单精度浮点数时也不能完全代替x87。

用于求64位紧缩字节(8×8位字节)的平均值,可用于视频编码中的像素平均和图像缩放等。可能是意识到这个功能的重要性,Intel在SSE中添加了功能完全相同的指令。

则用来补充MMX指令的不足,在紧缩字(4×16位字)相乘时可以得到比后者更准确的结果。Intel直到最近才在SSSE3中增加了功能相似的指令。

指令用于交换紧缩双字(2×32位字)中两个双字数据的位置。

、等4条指令用于完成整数和单精度浮点数之间的相互转换。

指令用于把将要使用到的数据从主内存提前载入快取中,以减少访问主内存的指令执行时的延迟。Intel在SSE中添加了类似的指令

指令与MMX中的功能相同,用于退出MMX状态。在K6-2和K6-III处理器中,比更快;在Athlon及更新的处理器中,等同于。

相关

  • 耳部疾病ICD-10 第八章:耳和乳突疾病,为世界卫生组织创建的ICD-10中涉及耳与乳突的疾病分类。外耳疾病(H60-H62)中耳和乳突疾病(H65-H75)内耳疾病(H80-H83)耳的其他疾患(H90-H95)
  • Nasub2/subWOsub4/sub钨酸钠,化学式Na2WO4,一般为二水合物(Na2WO4·2H2O)的形式。由三氧化钨与氢氧化钠溶液反应,再经蒸发结晶、离心脱水、干燥,得到成品。无色结晶或白色斜方结晶。溶于水,水溶液呈微碱
  • 气相色谱法-质谱联用气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱法和质谱法的特性,在试样中鉴别不同物质的分析的方法。GC-M
  • 股东股东(英语:Shareholder)是股份公司的出资人,又称为投资人。股份公司中持有股份的人,其权利及责任会于公司之章程细则中列明。一般情况下,股东有权出席股东大会并有表决权,公司亦可
  • 夏天 (消歧义)夏天可以指:
  • 司令海军陆战队司令(英语:Commandant of the Marine Corps, CMC)是美国海军陆战队军衔最高的军官之一,亦为参谋长联席会议成员。海军陆战队司令受海军部长直接领导——而非作为海军
  • 埃利亚斯·芒努斯·弗里斯埃利亚斯·芒努斯·弗里斯(瑞典语:Elias Magnus Fries,1794年8月15日-1878年2月8日),瑞典生物学家。他在六十多年的科研生涯中,搜集了欧洲各地大量的真菌标本,对其进行了科学、系统
  • 邦妮·艾伦斯邦妮·艾伦斯(英语:Bonnie Aarons,1979年6月3日-),是一名美国角色演员,由其所扮演的知名角色有《穆赫兰道》(2001年)的黑脸乞丐、《公主日记》(2001年)及其续集《公主日记2:皇家婚约》(20
  • 李载元李载元(朝鲜语:이재원/李載元,1831年-1891年),朝鲜王朝后期王族、大臣。字舜八,本贯全州李氏,出生于汉城(今韩国首尔)。他的生父兴完君李晸应是兴宣大院君李昰应的仲兄,因此李载元是兴宣
  • 克洛德·约瑟夫·鲁日·德·李尔克洛德·约瑟夫·鲁日·德·李尔(法语:Claude Joseph Rouget de Lisle,1760年5月10日隆勒索涅 - 1836年6月26日舒瓦西勒鲁瓦),法国作曲家,代表作为法国国歌《马赛曲》。鲁日·德·