格兰杰因果关系

✍ dations ◷ 2025-01-23 10:31:14 #格兰杰因果关系

格兰杰因果关系检验(英语:Granger causality test)是一种假设检定的统计方法,检验一组时间序列 x {\displaystyle x} 变量间的 相关性;自回归模型只能得出 变量 的相关性;但诺贝尔经济学奖得主克莱夫·格兰杰(Clive Granger)于1969年论证 ,在自回归模型中透过一系列的检定进而揭示不同变量之间的时间落差相关性是可行的。

格兰杰本人在其2003年获奖演说中强调了其引用的局限性,以及“很多荒谬论文的出现”(Of course, many ridiculous papers appeared)。格兰杰因果关系检验的结论只是一种统计估计,不是真正意义上的因果关系,不能作为肯定或否定因果关系的根据。同时,格兰杰因果关系检验也有一些不足之处,如并未考虑干扰因素的影响,也未考虑时间序列间非线性的相互关系。一些基于格兰杰因果关系检验的方法一定程度上解决了这些问题。

过去值(lag value,或称落後期):同一变项比当期时间上更早的值。例如:当期为 y 10 {\displaystyle y_{10}} ,它的落後期为 y i < 10 {\displaystyle y_{i<10}}

格兰杰因果关系检验的基本观念在于:未来的事件不会对目前与过去产生因果影响,而过去的事件才可能对现在及未来产生影响。也就是说,如果我们试图探讨变量 x {\displaystyle x} 是否对变量 y {\displaystyle y} 有因果影响,那么只需要估计 x {\displaystyle x} 的落後期是否会影响 y {\displaystyle y} 的现在值,因为 x {\displaystyle x} 的未来值不可能影响 y {\displaystyle y} 的现在值。假如在控制了 y {\displaystyle y} 变量的过去值以后, x {\displaystyle x} 变量的过去值仍能对Y 变量有显著的解释能力,我们就可以称 x {\displaystyle x} 能“Granger 影响”(Granger-cause) y {\displaystyle y}

最初版的格兰杰因果测试,有时候无法发现真正的因果关系。因为虽然对于认定因果关系而言,理论上还必须控制其他可能的干扰因素,但在 Granger 最初提出这套因果测试的版本中,并未纳入干扰变量的分析,而是假设其他可能解释变量的资讯包含在 y {\displaystyle y} 的落后值中。如果事实上带来因果关系的是第三变量(干扰变量),亦即若事实上操控 x {\displaystyle x} 并无法改变 y {\displaystyle y} ,格兰杰因果关系的零假设仍然可能被拒绝。因此标准版的格兰杰因果测试结果可能会产生误导性。

1980年代由其他的计量经济学家对Granger测试加以修改、扩充,将可能的第三(以上)变量纳入测试,成为使用面板資料(英语:panel data)的向量自回归模型(英语:panel data VAR model)。相较于最初版的 Granger 测试,扩充版可以产生更有效的估计结果。

研究人员希望发现明显的证据,比如 x {\displaystyle x} y {\displaystyle y} 的格兰杰原因但反之不成立,便能做出因果关系的推论。然而在实际操作中也可能会发现没有变量是对方的格兰杰原因,或者 x {\displaystyle x} y {\displaystyle y} 两个变量互为格兰杰原因。

1. 令 x {\displaystyle x} y {\displaystyle y} 为广义平稳序列。如要检测 x {\displaystyle x} y {\displaystyle y} 的格兰杰原因之零假设,首先引入 y {\displaystyle y} 的落後期建立 y {\displaystyle y} 的自回归模型(AR model on y {\displaystyle y} ):

2. 接着,引入 x {\displaystyle x} 的落後期建立增广回归模型:

3. 如果没有任何 x {\displaystyle x} 的落後期被留在模型中,无格兰杰因果关系的零假设就成立。

一些统计软件可以执行Granger causality test。例如:Stata、SPSS、EViews、R语言。

这里举个R语言中lmtest程序库里grangertest()指令的例子:

Granger causality testModel 1: fii ~ Lags(fii, 1:5) + Lags(rM, 1:5)Model 2: fii ~ Lags(fii, 1:5)  Res.Df  Df      F  Pr(>F)1    6292    634   5 2.5115 0.02896 *---Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Granger causality testModel 1: rM ~ Lags(rM, 1:5) + Lags(fii, 1:5)Model 2: rM ~ Lags(rM, 1:5)  Res.Df  Df      F Pr(>F)1    6292    634   5 1.1804 0.3172

模型1检验将滞后的rM从解释FII的回归模型中移除是否可行,答案是不可行的(因为p值 = 0.02896)。但由模型1和模型2的组合可发现从解释rM的模型中移除FII的落後期是可能的。我们可以由此断定rM是FII的格兰杰原因,反之则不成立。

承继著回归模型的基本性质,格兰杰因果关系分析也假设实际值与预测值之间的误差呈正态分布,若实际现象不呈正态分布将严重影响推论的有效性。

Hacker & Hatemi-J (2006)发展出一种不必在乎误差项是否呈正态分布的格兰杰因果关系研究方法。这种方法在财金分析上特别实用, 因为许多金融变量不服从正态分布。

近来,Hacker & Hatemi-J (2012)又进一步改善之,提出一种非对称的因果关系检验模型,据说可以区分正向与负向影响的因果影响。

相关

  • 物理哲学物理哲学是关于自然界物理知识、物理方法及反思的总括。他试图在我们已知的和未知的知识间建立桥梁,阐述我们思感可能达到的领域,并对我们这种探索的价值作出描述。
  • 钻石钻石结构,也叫金刚石结构,以金刚石的晶体结构命名,空间晶格为面心立方晶格,每个晶格点的基元包含两个相同的原子,分别位在000和
  • 芬兰湾芬兰湾(芬兰语:Suomenlahti;爱沙尼亚语:Soome laht;俄语:Финский залив, Finskiy zaliv;瑞典语:Finska viken)是波罗的海东部的大海湾,位于芬兰、爱沙尼亚之间,伸展至俄罗
  • 色立体色立体是一种三维表示的色彩空间,类似于二维表示的色环。色立体额外增加的维度使得它可以额外多表现一个维度的色彩变化。二维色轮通常表现色相的变化(红,绿,蓝等)和明度(明暗层次
  • 灾防告警细胞广播讯息系统灾防告警细胞广播讯息系统(英语:Public Warning System,缩写:PWS)又称灾防告警系统,是中华民国政府利用细胞广播技术,在短时间内经由4G业者的行动宽带系统,大量发送地震速报、土石流
  • 阿勒格尼阿勒格尼国家森林(英语:Allegheny National Forest)是一处美国国家森林,地处宾夕法尼亚州西北部,森林面积513,175英亩(801.8平方英里;2,076.7平方千米)。林区内部有座金祖阿水坝,将阿
  • 接合菌纲接合菌门(学名:Zygomycota)是一类真菌。 其孢子分为有性及无性两种,有性生殖为接合孢子,无性生殖为孢囊孢子;此门菌物的菌丝属于“无隔多核”。传统上依据形态将真菌分为接合菌门(Z
  • 丹尼斯·哈斯特尔特丹尼斯·哈斯特尔特(英语:Dennis Hastert,1942年1月2日-),美国共和党籍政治人物,前美国众议院议长。丹尼斯·哈斯特尔特涉嫌违反银行法,被起诉非法取款,以及向联邦调查人员撒谎。2016
  • 失信选举人失信选举人,又译作不忠选举人(英文:Faithless elector)指美国选举人团中,没有将票投给自己宣誓支持的总统或副总统候选人的选举人。严格地说,失信选举人与未宣誓选举人(Unpledged e
  • 西伯利亚猫西伯利亚是家猫品种,目前已在俄罗斯几个世纪。另一个名字是西伯利亚森林猫。西伯利亚猫是一个古老的品种,可能是西伯利亚及乌克兰地区的家猫和当地的野猫的杂交后代。现在被认