格兰杰因果关系

✍ dations ◷ 2024-09-20 08:05:00 #格兰杰因果关系

格兰杰因果关系检验(英语:Granger causality test)是一种假设检定的统计方法,检验一组时间序列 x {\displaystyle x} 变量间的 相关性;自回归模型只能得出 变量 的相关性;但诺贝尔经济学奖得主克莱夫·格兰杰(Clive Granger)于1969年论证 ,在自回归模型中透过一系列的检定进而揭示不同变量之间的时间落差相关性是可行的。

格兰杰本人在其2003年获奖演说中强调了其引用的局限性,以及“很多荒谬论文的出现”(Of course, many ridiculous papers appeared)。格兰杰因果关系检验的结论只是一种统计估计,不是真正意义上的因果关系,不能作为肯定或否定因果关系的根据。同时,格兰杰因果关系检验也有一些不足之处,如并未考虑干扰因素的影响,也未考虑时间序列间非线性的相互关系。一些基于格兰杰因果关系检验的方法一定程度上解决了这些问题。

过去值(lag value,或称落後期):同一变项比当期时间上更早的值。例如:当期为 y 10 {\displaystyle y_{10}} ,它的落後期为 y i < 10 {\displaystyle y_{i<10}}

格兰杰因果关系检验的基本观念在于:未来的事件不会对目前与过去产生因果影响,而过去的事件才可能对现在及未来产生影响。也就是说,如果我们试图探讨变量 x {\displaystyle x} 是否对变量 y {\displaystyle y} 有因果影响,那么只需要估计 x {\displaystyle x} 的落後期是否会影响 y {\displaystyle y} 的现在值,因为 x {\displaystyle x} 的未来值不可能影响 y {\displaystyle y} 的现在值。假如在控制了 y {\displaystyle y} 变量的过去值以后, x {\displaystyle x} 变量的过去值仍能对Y 变量有显著的解释能力,我们就可以称 x {\displaystyle x} 能“Granger 影响”(Granger-cause) y {\displaystyle y}

最初版的格兰杰因果测试,有时候无法发现真正的因果关系。因为虽然对于认定因果关系而言,理论上还必须控制其他可能的干扰因素,但在 Granger 最初提出这套因果测试的版本中,并未纳入干扰变量的分析,而是假设其他可能解释变量的资讯包含在 y {\displaystyle y} 的落后值中。如果事实上带来因果关系的是第三变量(干扰变量),亦即若事实上操控 x {\displaystyle x} 并无法改变 y {\displaystyle y} ,格兰杰因果关系的零假设仍然可能被拒绝。因此标准版的格兰杰因果测试结果可能会产生误导性。

1980年代由其他的计量经济学家对Granger测试加以修改、扩充,将可能的第三(以上)变量纳入测试,成为使用面板資料(英语:panel data)的向量自回归模型(英语:panel data VAR model)。相较于最初版的 Granger 测试,扩充版可以产生更有效的估计结果。

研究人员希望发现明显的证据,比如 x {\displaystyle x} y {\displaystyle y} 的格兰杰原因但反之不成立,便能做出因果关系的推论。然而在实际操作中也可能会发现没有变量是对方的格兰杰原因,或者 x {\displaystyle x} y {\displaystyle y} 两个变量互为格兰杰原因。

1. 令 x {\displaystyle x} y {\displaystyle y} 为广义平稳序列。如要检测 x {\displaystyle x} y {\displaystyle y} 的格兰杰原因之零假设,首先引入 y {\displaystyle y} 的落後期建立 y {\displaystyle y} 的自回归模型(AR model on y {\displaystyle y} ):

2. 接着,引入 x {\displaystyle x} 的落後期建立增广回归模型:

3. 如果没有任何 x {\displaystyle x} 的落後期被留在模型中,无格兰杰因果关系的零假设就成立。

一些统计软件可以执行Granger causality test。例如:Stata、SPSS、EViews、R语言。

这里举个R语言中lmtest程序库里grangertest()指令的例子:

Granger causality testModel 1: fii ~ Lags(fii, 1:5) + Lags(rM, 1:5)Model 2: fii ~ Lags(fii, 1:5)  Res.Df  Df      F  Pr(>F)1    6292    634   5 2.5115 0.02896 *---Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Granger causality testModel 1: rM ~ Lags(rM, 1:5) + Lags(fii, 1:5)Model 2: rM ~ Lags(rM, 1:5)  Res.Df  Df      F Pr(>F)1    6292    634   5 1.1804 0.3172

模型1检验将滞后的rM从解释FII的回归模型中移除是否可行,答案是不可行的(因为p值 = 0.02896)。但由模型1和模型2的组合可发现从解释rM的模型中移除FII的落後期是可能的。我们可以由此断定rM是FII的格兰杰原因,反之则不成立。

承继著回归模型的基本性质,格兰杰因果关系分析也假设实际值与预测值之间的误差呈正态分布,若实际现象不呈正态分布将严重影响推论的有效性。

Hacker & Hatemi-J (2006)发展出一种不必在乎误差项是否呈正态分布的格兰杰因果关系研究方法。这种方法在财金分析上特别实用, 因为许多金融变量不服从正态分布。

近来,Hacker & Hatemi-J (2012)又进一步改善之,提出一种非对称的因果关系检验模型,据说可以区分正向与负向影响的因果影响。

相关

  • 失控减压失控减压(Uncontrolled decompression),简称失压,是指在密闭系统(例如飞机客舱)中气压无预期的降低,并且通常是因为人为错误、金属疲劳、工程缺陷或是撞击,导致压力容器泄压至比其周
  • 睾丸酮睾酮(testosterone)(又称睾固酮、睾丸素、睾丸酮或睾甾酮、睾脂酮)是类固醇激素,由男性的睾丸或女性的卵巢分泌,肾上腺亦分泌少量睾酮。睾酮是主要的雌雄激素及蛋白同化甾类。不论
  • 圣地亚哥·卡拉特拉瓦圣地亚哥·卡拉特拉瓦·巴利斯(西班牙语:Santiago Calatrava Valls,1951年7月28日-),西班牙建筑师、雕刻家,人称“建筑诗人”,工作室位于瑞士苏黎世、纽约与巴黎等地。先后在瓦伦西
  • 三叶草subg. Chronosemium subg. TrifoliumAmoria C. Presl Bobrovia A. P. Khokhr. Chrysaspis Desv. Lupinaster Fabr. Ursia Vassilcz. Xerosphaera Soják三叶草属(Trifolium),又
  • 节约能源可持续发展主题可再生能源主题环境主题节约能源(简称节能)是指以减少能源消耗的方式,保护资源,减少对环境的污染。节能可以通过提高能源使用效率,减少能源消耗,或降低传统能源的消
  • 兴武兴武(1635年)为中国明朝农民起义首领高迎祥的年号,前后共1年。该年号见于吴世济《太和县御寇始末·复按院张公博访利弊》,流寇“胁令写闯天王兴武年号告示”。姚雪垠称崇祯八年
  • 徐 臻杜臻(1633年-1703年),字肇余,榜名徐臻,浙江省嘉兴府秀水县(今浙江省嘉兴市)人,清朝政治人物、进士出身。顺治十五年,登进士,改庶吉士。顺治十八年,任翰林院编修。后任秘书院侍读。康熙八
  • 焦夫省焦夫省(阿拉伯语:محافظة الجوف‎)是也门北部的一个省,北邻沙特阿拉伯。面积39,496.33平方公里,2004年人口443,797人。首府焦夫。下分十二区。
  • 嬉皮嬉皮士(英语:hippie, hippy)本来被用来描写西方国家1960年代和1970年代反抗习俗和当时政治的年轻人。嬉皮士这个名称是通过《旧金山纪事报》的记者赫柏·凯恩普及的。嬉皮士不
  • 美国陆军现役中将列表按照美国法典第10卷第32章第525节之规定,陆军内部最多可配备上将7位、少将以上45位,当前陆军内部实际配备上将6位,因此中将最多可配39位,当前陆军内部实际配备中将为34名,另有联