格兰杰因果关系

✍ dations ◷ 2025-02-23 15:14:29 #格兰杰因果关系

格兰杰因果关系检验(英语:Granger causality test)是一种假设检定的统计方法,检验一组时间序列 x {\displaystyle x} 变量间的 相关性;自回归模型只能得出 变量 的相关性;但诺贝尔经济学奖得主克莱夫·格兰杰(Clive Granger)于1969年论证 ,在自回归模型中透过一系列的检定进而揭示不同变量之间的时间落差相关性是可行的。

格兰杰本人在其2003年获奖演说中强调了其引用的局限性,以及“很多荒谬论文的出现”(Of course, many ridiculous papers appeared)。格兰杰因果关系检验的结论只是一种统计估计,不是真正意义上的因果关系,不能作为肯定或否定因果关系的根据。同时,格兰杰因果关系检验也有一些不足之处,如并未考虑干扰因素的影响,也未考虑时间序列间非线性的相互关系。一些基于格兰杰因果关系检验的方法一定程度上解决了这些问题。

过去值(lag value,或称落後期):同一变项比当期时间上更早的值。例如:当期为 y 10 {\displaystyle y_{10}} ,它的落後期为 y i < 10 {\displaystyle y_{i<10}}

格兰杰因果关系检验的基本观念在于:未来的事件不会对目前与过去产生因果影响,而过去的事件才可能对现在及未来产生影响。也就是说,如果我们试图探讨变量 x {\displaystyle x} 是否对变量 y {\displaystyle y} 有因果影响,那么只需要估计 x {\displaystyle x} 的落後期是否会影响 y {\displaystyle y} 的现在值,因为 x {\displaystyle x} 的未来值不可能影响 y {\displaystyle y} 的现在值。假如在控制了 y {\displaystyle y} 变量的过去值以后, x {\displaystyle x} 变量的过去值仍能对Y 变量有显著的解释能力,我们就可以称 x {\displaystyle x} 能“Granger 影响”(Granger-cause) y {\displaystyle y}

最初版的格兰杰因果测试,有时候无法发现真正的因果关系。因为虽然对于认定因果关系而言,理论上还必须控制其他可能的干扰因素,但在 Granger 最初提出这套因果测试的版本中,并未纳入干扰变量的分析,而是假设其他可能解释变量的资讯包含在 y {\displaystyle y} 的落后值中。如果事实上带来因果关系的是第三变量(干扰变量),亦即若事实上操控 x {\displaystyle x} 并无法改变 y {\displaystyle y} ,格兰杰因果关系的零假设仍然可能被拒绝。因此标准版的格兰杰因果测试结果可能会产生误导性。

1980年代由其他的计量经济学家对Granger测试加以修改、扩充,将可能的第三(以上)变量纳入测试,成为使用面板資料(英语:panel data)的向量自回归模型(英语:panel data VAR model)。相较于最初版的 Granger 测试,扩充版可以产生更有效的估计结果。

研究人员希望发现明显的证据,比如 x {\displaystyle x} y {\displaystyle y} 的格兰杰原因但反之不成立,便能做出因果关系的推论。然而在实际操作中也可能会发现没有变量是对方的格兰杰原因,或者 x {\displaystyle x} y {\displaystyle y} 两个变量互为格兰杰原因。

1. 令 x {\displaystyle x} y {\displaystyle y} 为广义平稳序列。如要检测 x {\displaystyle x} y {\displaystyle y} 的格兰杰原因之零假设,首先引入 y {\displaystyle y} 的落後期建立 y {\displaystyle y} 的自回归模型(AR model on y {\displaystyle y} ):

2. 接着,引入 x {\displaystyle x} 的落後期建立增广回归模型:

3. 如果没有任何 x {\displaystyle x} 的落後期被留在模型中,无格兰杰因果关系的零假设就成立。

一些统计软件可以执行Granger causality test。例如:Stata、SPSS、EViews、R语言。

这里举个R语言中lmtest程序库里grangertest()指令的例子:

Granger causality testModel 1: fii ~ Lags(fii, 1:5) + Lags(rM, 1:5)Model 2: fii ~ Lags(fii, 1:5)  Res.Df  Df      F  Pr(>F)1    6292    634   5 2.5115 0.02896 *---Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Granger causality testModel 1: rM ~ Lags(rM, 1:5) + Lags(fii, 1:5)Model 2: rM ~ Lags(rM, 1:5)  Res.Df  Df      F Pr(>F)1    6292    634   5 1.1804 0.3172

模型1检验将滞后的rM从解释FII的回归模型中移除是否可行,答案是不可行的(因为p值 = 0.02896)。但由模型1和模型2的组合可发现从解释rM的模型中移除FII的落後期是可能的。我们可以由此断定rM是FII的格兰杰原因,反之则不成立。

承继著回归模型的基本性质,格兰杰因果关系分析也假设实际值与预测值之间的误差呈正态分布,若实际现象不呈正态分布将严重影响推论的有效性。

Hacker & Hatemi-J (2006)发展出一种不必在乎误差项是否呈正态分布的格兰杰因果关系研究方法。这种方法在财金分析上特别实用, 因为许多金融变量不服从正态分布。

近来,Hacker & Hatemi-J (2012)又进一步改善之,提出一种非对称的因果关系检验模型,据说可以区分正向与负向影响的因果影响。

相关

  • 宫颈举痛宫颈举痛(英语:cervical motion tenderness)或宫颈刺激(cervical excitation),是一类妇科盆腔检查症状。它通常都病发于盆腔炎和宫外孕中,并用于区分盆腔炎和阑尾炎。它也被口语称
  • ProtegeProtégé,常简化拼写为“Protege”,是一个史丹佛大学开发的本体编辑和知识管理系统。开发语言采用Java,属于开放源码软件。由于其优秀的设计和众多的插件,Protégé已成为当前
  • 韦克斯勒智力表大卫·韦克斯勒(David Wechsler,1896年1月12日-1981年5月2日)是一位美国杰出的心理学家,他制定了著名的智力量表,例如韦克斯勒成人智力量表(WAIS0)和韦克斯勒儿童智力量表(WISC)。大卫
  • 以人名命名的常数以人名命名的常数指以对该常数相关领域有突出贡献的数学家、科学家或其他人,或该常数发现者的名字命名的常数。例如:毕达哥拉斯常数、普朗克常数、阿伏伽德罗常数等。有些常数
  • 内体胞内体(英语:Endosome,又称内体)在细胞生物学中指的是一种真核细胞中的膜结合细胞器,属于一种囊泡结构。作为细胞内吞作用中运载途径的一个区室,胞内体从细胞质膜被传递到溶酶体被
  • 爱德华三世爱德华三世(英语:Edward III,1312年11月13日-1377年6月21日),英格兰国王,1327年到1377年在位。爱德华三世是被谋杀的爱德华二世的儿子,生于伯克郡温莎。其母法兰西的伊莎贝拉与马奇
  • 德国广播德国广播电台(德语:Deutschlandradio,简称DLR或DRadio)是德国的一家公共广播电台,1994年组建而成,总部位于科隆,面向德国国内播出。德国广播电台、德国公共广播联盟(ARD)以及德国电视
  • 两厅院国家两厅院(简称两厅院,全衔国家表演艺术中心国家两厅院)是中华民国台北市博爱特区内的国家级艺文表演场馆,隶属国家表演艺术中心,两厅院指的是国家戏剧院和国家音乐厅,内部设有戏
  • 颞骨颞骨(英语:temporal bone),构成人体颅骨的29块骨骼之一。共两块。左右各一。位于颅骨两侧。上有称为内耳门的开口。颞骨的位置(显示为绿色)。动画。颞骨的形状(左)。颅骨。蝶骨
  • 金融风暴金融危机,又称金融风暴。是指一个国家或几个国家与地区的全部或大部分金融指标(如:短期利率、货币资产、证券、房地产、土地价格、商业破产数和金融机构倒闭数)的急剧、短暂和超