格兰杰因果关系

✍ dations ◷ 2025-04-25 14:17:58 #格兰杰因果关系

格兰杰因果关系检验(英语:Granger causality test)是一种假设检定的统计方法,检验一组时间序列 x {\displaystyle x} 变量间的 相关性;自回归模型只能得出 变量 的相关性;但诺贝尔经济学奖得主克莱夫·格兰杰(Clive Granger)于1969年论证 ,在自回归模型中透过一系列的检定进而揭示不同变量之间的时间落差相关性是可行的。

格兰杰本人在其2003年获奖演说中强调了其引用的局限性,以及“很多荒谬论文的出现”(Of course, many ridiculous papers appeared)。格兰杰因果关系检验的结论只是一种统计估计,不是真正意义上的因果关系,不能作为肯定或否定因果关系的根据。同时,格兰杰因果关系检验也有一些不足之处,如并未考虑干扰因素的影响,也未考虑时间序列间非线性的相互关系。一些基于格兰杰因果关系检验的方法一定程度上解决了这些问题。

过去值(lag value,或称落後期):同一变项比当期时间上更早的值。例如:当期为 y 10 {\displaystyle y_{10}} ,它的落後期为 y i < 10 {\displaystyle y_{i<10}}

格兰杰因果关系检验的基本观念在于:未来的事件不会对目前与过去产生因果影响,而过去的事件才可能对现在及未来产生影响。也就是说,如果我们试图探讨变量 x {\displaystyle x} 是否对变量 y {\displaystyle y} 有因果影响,那么只需要估计 x {\displaystyle x} 的落後期是否会影响 y {\displaystyle y} 的现在值,因为 x {\displaystyle x} 的未来值不可能影响 y {\displaystyle y} 的现在值。假如在控制了 y {\displaystyle y} 变量的过去值以后, x {\displaystyle x} 变量的过去值仍能对Y 变量有显著的解释能力,我们就可以称 x {\displaystyle x} 能“Granger 影响”(Granger-cause) y {\displaystyle y}

最初版的格兰杰因果测试,有时候无法发现真正的因果关系。因为虽然对于认定因果关系而言,理论上还必须控制其他可能的干扰因素,但在 Granger 最初提出这套因果测试的版本中,并未纳入干扰变量的分析,而是假设其他可能解释变量的资讯包含在 y {\displaystyle y} 的落后值中。如果事实上带来因果关系的是第三变量(干扰变量),亦即若事实上操控 x {\displaystyle x} 并无法改变 y {\displaystyle y} ,格兰杰因果关系的零假设仍然可能被拒绝。因此标准版的格兰杰因果测试结果可能会产生误导性。

1980年代由其他的计量经济学家对Granger测试加以修改、扩充,将可能的第三(以上)变量纳入测试,成为使用面板資料(英语:panel data)的向量自回归模型(英语:panel data VAR model)。相较于最初版的 Granger 测试,扩充版可以产生更有效的估计结果。

研究人员希望发现明显的证据,比如 x {\displaystyle x} y {\displaystyle y} 的格兰杰原因但反之不成立,便能做出因果关系的推论。然而在实际操作中也可能会发现没有变量是对方的格兰杰原因,或者 x {\displaystyle x} y {\displaystyle y} 两个变量互为格兰杰原因。

1. 令 x {\displaystyle x} y {\displaystyle y} 为广义平稳序列。如要检测 x {\displaystyle x} y {\displaystyle y} 的格兰杰原因之零假设,首先引入 y {\displaystyle y} 的落後期建立 y {\displaystyle y} 的自回归模型(AR model on y {\displaystyle y} ):

2. 接着,引入 x {\displaystyle x} 的落後期建立增广回归模型:

3. 如果没有任何 x {\displaystyle x} 的落後期被留在模型中,无格兰杰因果关系的零假设就成立。

一些统计软件可以执行Granger causality test。例如:Stata、SPSS、EViews、R语言。

这里举个R语言中lmtest程序库里grangertest()指令的例子:

Granger causality testModel 1: fii ~ Lags(fii, 1:5) + Lags(rM, 1:5)Model 2: fii ~ Lags(fii, 1:5)  Res.Df  Df      F  Pr(>F)1    6292    634   5 2.5115 0.02896 *---Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Granger causality testModel 1: rM ~ Lags(rM, 1:5) + Lags(fii, 1:5)Model 2: rM ~ Lags(rM, 1:5)  Res.Df  Df      F Pr(>F)1    6292    634   5 1.1804 0.3172

模型1检验将滞后的rM从解释FII的回归模型中移除是否可行,答案是不可行的(因为p值 = 0.02896)。但由模型1和模型2的组合可发现从解释rM的模型中移除FII的落後期是可能的。我们可以由此断定rM是FII的格兰杰原因,反之则不成立。

承继著回归模型的基本性质,格兰杰因果关系分析也假设实际值与预测值之间的误差呈正态分布,若实际现象不呈正态分布将严重影响推论的有效性。

Hacker & Hatemi-J (2006)发展出一种不必在乎误差项是否呈正态分布的格兰杰因果关系研究方法。这种方法在财金分析上特别实用, 因为许多金融变量不服从正态分布。

近来,Hacker & Hatemi-J (2012)又进一步改善之,提出一种非对称的因果关系检验模型,据说可以区分正向与负向影响的因果影响。

相关

  • 脂类脂类(英语:Lipid),又称脂质,这是一类不溶于水而易溶于脂肪溶剂(醇、醚、氯仿、苯)等非极性有机溶剂,由脂肪酸与醇作用脱水缩合生成的酯及其衍生物统称为脂类,其中包括脂肪、蜡、类固
  • 西印度群岛西印度群岛(英文:West Indies;法文:Indes occidentales)泛指南北美洲之间海域中的一个一连串的岛群。北起美国佛罗里达半岛南端;西起墨西哥尤卡坦半岛东端。总岛屿数达7000个左右
  • 牌匾匾额是一块写上文字的牌子 (通常是木板),悬挂在殿堂、楼阁、门庭、园林大门的正上方,通常是说明建筑物的名称。挂在小船的牌子称为舫匾。匾额出现于中国及其他东亚地区的建筑物
  • Mgsub3/sub(PSsub2/subOsub2/sub)sub2/sub&二硫代磷酸镁是一种无机化合物,化学式为Mg3(PS2O2)2。该化合物可由五硫化二磷和氧化镁的悬浊液在0℃时反应得到:
  • 竖脊肌竖脊肌(一束肌肉和腱以及其在胸部及颈部的延伸)位于脊椎一侧的沟上。竖脊肌在腰部和胸部由胸腰筋膜所覆盖,在颈部则由项韧带所覆盖。竖脊肌的肌肉和腱在脊椎的不同部位会有不同
  • 四进位四进制是以4为底数的进位制,以 0、1、2 和 3 四个数字表示任何实数。四进制与所有固定底数的记数系统有着很多共同的属性,比如以标准的形式表示任何实数的能力(近乎独特),以及表
  • 时代封面人物列表 (1930年代)下列为1930年代的《时代》杂志的封面人物。《时代》杂志在1923年首次发行,作为美国领先的新闻杂志,其封面人物是同时期的各方面的风云人物。
  • 阿卜杜勒-卡迪尔·塔利卜·奥马尔阿卜杜勒-卡迪尔·塔利卜·奥马尔(阿拉伯语:عبد القادر طالب عمر‎、西班牙语:Abdelkader Taleb Oumar;1951年-),萨基亚埃尔阿姆拉和黄金河人民解放阵线(简称“西撒
  • 清水市清水市(Clearwater, Florida)是美国佛罗里达州皮尼拉斯县的县治,位于佛罗里达半岛西部皮尼拉斯半岛上。中为沿海水道,西为墨西哥湾。面积97.7平方公里,2006年人口107,742人。1891
  • 阿摩司·特沃斯基阿摩司·纳坦·特沃斯基(英语:Amos Nathan Tversky,希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ez