格兰杰因果关系

✍ dations ◷ 2024-12-23 05:59:26 #格兰杰因果关系

格兰杰因果关系检验(英语:Granger causality test)是一种假设检定的统计方法,检验一组时间序列 x {\displaystyle x} 变量间的 相关性;自回归模型只能得出 变量 的相关性;但诺贝尔经济学奖得主克莱夫·格兰杰(Clive Granger)于1969年论证 ,在自回归模型中透过一系列的检定进而揭示不同变量之间的时间落差相关性是可行的。

格兰杰本人在其2003年获奖演说中强调了其引用的局限性,以及“很多荒谬论文的出现”(Of course, many ridiculous papers appeared)。格兰杰因果关系检验的结论只是一种统计估计,不是真正意义上的因果关系,不能作为肯定或否定因果关系的根据。同时,格兰杰因果关系检验也有一些不足之处,如并未考虑干扰因素的影响,也未考虑时间序列间非线性的相互关系。一些基于格兰杰因果关系检验的方法一定程度上解决了这些问题。

过去值(lag value,或称落後期):同一变项比当期时间上更早的值。例如:当期为 y 10 {\displaystyle y_{10}} ,它的落後期为 y i < 10 {\displaystyle y_{i<10}}

格兰杰因果关系检验的基本观念在于:未来的事件不会对目前与过去产生因果影响,而过去的事件才可能对现在及未来产生影响。也就是说,如果我们试图探讨变量 x {\displaystyle x} 是否对变量 y {\displaystyle y} 有因果影响,那么只需要估计 x {\displaystyle x} 的落後期是否会影响 y {\displaystyle y} 的现在值,因为 x {\displaystyle x} 的未来值不可能影响 y {\displaystyle y} 的现在值。假如在控制了 y {\displaystyle y} 变量的过去值以后, x {\displaystyle x} 变量的过去值仍能对Y 变量有显著的解释能力,我们就可以称 x {\displaystyle x} 能“Granger 影响”(Granger-cause) y {\displaystyle y}

最初版的格兰杰因果测试,有时候无法发现真正的因果关系。因为虽然对于认定因果关系而言,理论上还必须控制其他可能的干扰因素,但在 Granger 最初提出这套因果测试的版本中,并未纳入干扰变量的分析,而是假设其他可能解释变量的资讯包含在 y {\displaystyle y} 的落后值中。如果事实上带来因果关系的是第三变量(干扰变量),亦即若事实上操控 x {\displaystyle x} 并无法改变 y {\displaystyle y} ,格兰杰因果关系的零假设仍然可能被拒绝。因此标准版的格兰杰因果测试结果可能会产生误导性。

1980年代由其他的计量经济学家对Granger测试加以修改、扩充,将可能的第三(以上)变量纳入测试,成为使用面板資料(英语:panel data)的向量自回归模型(英语:panel data VAR model)。相较于最初版的 Granger 测试,扩充版可以产生更有效的估计结果。

研究人员希望发现明显的证据,比如 x {\displaystyle x} y {\displaystyle y} 的格兰杰原因但反之不成立,便能做出因果关系的推论。然而在实际操作中也可能会发现没有变量是对方的格兰杰原因,或者 x {\displaystyle x} y {\displaystyle y} 两个变量互为格兰杰原因。

1. 令 x {\displaystyle x} y {\displaystyle y} 为广义平稳序列。如要检测 x {\displaystyle x} y {\displaystyle y} 的格兰杰原因之零假设,首先引入 y {\displaystyle y} 的落後期建立 y {\displaystyle y} 的自回归模型(AR model on y {\displaystyle y} ):

2. 接着,引入 x {\displaystyle x} 的落後期建立增广回归模型:

3. 如果没有任何 x {\displaystyle x} 的落後期被留在模型中,无格兰杰因果关系的零假设就成立。

一些统计软件可以执行Granger causality test。例如:Stata、SPSS、EViews、R语言。

这里举个R语言中lmtest程序库里grangertest()指令的例子:

Granger causality testModel 1: fii ~ Lags(fii, 1:5) + Lags(rM, 1:5)Model 2: fii ~ Lags(fii, 1:5)  Res.Df  Df      F  Pr(>F)1    6292    634   5 2.5115 0.02896 *---Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Granger causality testModel 1: rM ~ Lags(rM, 1:5) + Lags(fii, 1:5)Model 2: rM ~ Lags(rM, 1:5)  Res.Df  Df      F Pr(>F)1    6292    634   5 1.1804 0.3172

模型1检验将滞后的rM从解释FII的回归模型中移除是否可行,答案是不可行的(因为p值 = 0.02896)。但由模型1和模型2的组合可发现从解释rM的模型中移除FII的落後期是可能的。我们可以由此断定rM是FII的格兰杰原因,反之则不成立。

承继著回归模型的基本性质,格兰杰因果关系分析也假设实际值与预测值之间的误差呈正态分布,若实际现象不呈正态分布将严重影响推论的有效性。

Hacker & Hatemi-J (2006)发展出一种不必在乎误差项是否呈正态分布的格兰杰因果关系研究方法。这种方法在财金分析上特别实用, 因为许多金融变量不服从正态分布。

近来,Hacker & Hatemi-J (2012)又进一步改善之,提出一种非对称的因果关系检验模型,据说可以区分正向与负向影响的因果影响。

相关

  • 飞白书陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 裂体生殖分裂(英语:Fission),又叫裂殖,在生物学中是指一个细胞(或身体、种群或物种)分为两个或多个部分,以及这些部分再生为细胞(身体、种群或物种)。通常是单细胞生物所形的生殖方式。该种生
  • 方守贤方守贤(1932年10月28日-2020年1月19日),安徽太平人,生于上海,中国加速器物理学家,中国科学院高能物理研究所研究员、前所长,北京正负电子对撞机国家实验室主任,中国科学院数学物理学
  • 氧化亚锡氧化亚锡是一种无机化合物,化学式为SnO。在250~350℃加热甲酸亚锡,或者在320~350℃加热草酸亚锡,均可得到氧化亚锡:也可以在氯化亚锡溶液中,加入碳酸钠溶液至溶液刚呈碱性,得到水
  • 梅兰妮亚·特朗普梅拉尼娅·特朗普(英语:Melania Trump,原名梅拉尼娅·克纳夫斯(斯洛文尼亚语:Melanija Knavs),德语化名为梅拉尼娅·克瑙斯(德语:Melania Knauss),1970年4月26日-)是第45任美国总统唐纳德
  • 彦根藩彦根藩(日语:彦根藩/ひこねはん Hikone han */?)是日本江户时代的一个藩。位于近江国北部(今滋贺县彦根市)。藩厅是彦根城(当初配置时是佐和山城)。藩主是井伊氏。支藩是彦根新田
  • yellow fever黄热病(法语:la fièvre jaune ; 英语:Yellow Fever, Yellow Jack, Yellow Plague,俗称黄杰克、黑呕,有时又称美洲瘟疫)是一种急性病毒病。症状通常包括发烧、冷颤、食欲下降、恶
  • 夏威夷花园夏威夷加登斯(英文:Hawaiian Gardens),是美国加利福尼亚州洛杉矶县下属的一座城市。建市于1964年4月9日,面积 大约为0.95平方英里 (2.5平方公里)。根据2010年美国人口普查,该市有
  • 长鼻獴长鼻獴是蒙的一种,现在多分布于非洲,是较没有受到人类开垦威胁的物种之一。
  • 佛手瓜佛手瓜(学名:Sechium edule)是一种葫芦科佛手瓜属植物,又称合手瓜、合掌瓜、佛手、隼人瓜、拳头瓜、梨瓜等。原产于墨西哥、中美洲和西印度群岛,1915年传入中国,在台湾、中国江南