格兰杰因果关系

✍ dations ◷ 2025-07-16 04:40:22 #格兰杰因果关系

格兰杰因果关系检验(英语:Granger causality test)是一种假设检定的统计方法,检验一组时间序列 x {\displaystyle x} 变量间的 相关性;自回归模型只能得出 变量 的相关性;但诺贝尔经济学奖得主克莱夫·格兰杰(Clive Granger)于1969年论证 ,在自回归模型中透过一系列的检定进而揭示不同变量之间的时间落差相关性是可行的。

格兰杰本人在其2003年获奖演说中强调了其引用的局限性,以及“很多荒谬论文的出现”(Of course, many ridiculous papers appeared)。格兰杰因果关系检验的结论只是一种统计估计,不是真正意义上的因果关系,不能作为肯定或否定因果关系的根据。同时,格兰杰因果关系检验也有一些不足之处,如并未考虑干扰因素的影响,也未考虑时间序列间非线性的相互关系。一些基于格兰杰因果关系检验的方法一定程度上解决了这些问题。

过去值(lag value,或称落後期):同一变项比当期时间上更早的值。例如:当期为 y 10 {\displaystyle y_{10}} ,它的落後期为 y i < 10 {\displaystyle y_{i<10}}

格兰杰因果关系检验的基本观念在于:未来的事件不会对目前与过去产生因果影响,而过去的事件才可能对现在及未来产生影响。也就是说,如果我们试图探讨变量 x {\displaystyle x} 是否对变量 y {\displaystyle y} 有因果影响,那么只需要估计 x {\displaystyle x} 的落後期是否会影响 y {\displaystyle y} 的现在值,因为 x {\displaystyle x} 的未来值不可能影响 y {\displaystyle y} 的现在值。假如在控制了 y {\displaystyle y} 变量的过去值以后, x {\displaystyle x} 变量的过去值仍能对Y 变量有显著的解释能力,我们就可以称 x {\displaystyle x} 能“Granger 影响”(Granger-cause) y {\displaystyle y}

最初版的格兰杰因果测试,有时候无法发现真正的因果关系。因为虽然对于认定因果关系而言,理论上还必须控制其他可能的干扰因素,但在 Granger 最初提出这套因果测试的版本中,并未纳入干扰变量的分析,而是假设其他可能解释变量的资讯包含在 y {\displaystyle y} 的落后值中。如果事实上带来因果关系的是第三变量(干扰变量),亦即若事实上操控 x {\displaystyle x} 并无法改变 y {\displaystyle y} ,格兰杰因果关系的零假设仍然可能被拒绝。因此标准版的格兰杰因果测试结果可能会产生误导性。

1980年代由其他的计量经济学家对Granger测试加以修改、扩充,将可能的第三(以上)变量纳入测试,成为使用面板資料(英语:panel data)的向量自回归模型(英语:panel data VAR model)。相较于最初版的 Granger 测试,扩充版可以产生更有效的估计结果。

研究人员希望发现明显的证据,比如 x {\displaystyle x} y {\displaystyle y} 的格兰杰原因但反之不成立,便能做出因果关系的推论。然而在实际操作中也可能会发现没有变量是对方的格兰杰原因,或者 x {\displaystyle x} y {\displaystyle y} 两个变量互为格兰杰原因。

1. 令 x {\displaystyle x} y {\displaystyle y} 为广义平稳序列。如要检测 x {\displaystyle x} y {\displaystyle y} 的格兰杰原因之零假设,首先引入 y {\displaystyle y} 的落後期建立 y {\displaystyle y} 的自回归模型(AR model on y {\displaystyle y} ):

2. 接着,引入 x {\displaystyle x} 的落後期建立增广回归模型:

3. 如果没有任何 x {\displaystyle x} 的落後期被留在模型中,无格兰杰因果关系的零假设就成立。

一些统计软件可以执行Granger causality test。例如:Stata、SPSS、EViews、R语言。

这里举个R语言中lmtest程序库里grangertest()指令的例子:

Granger causality testModel 1: fii ~ Lags(fii, 1:5) + Lags(rM, 1:5)Model 2: fii ~ Lags(fii, 1:5)  Res.Df  Df      F  Pr(>F)1    6292    634   5 2.5115 0.02896 *---Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Granger causality testModel 1: rM ~ Lags(rM, 1:5) + Lags(fii, 1:5)Model 2: rM ~ Lags(rM, 1:5)  Res.Df  Df      F Pr(>F)1    6292    634   5 1.1804 0.3172

模型1检验将滞后的rM从解释FII的回归模型中移除是否可行,答案是不可行的(因为p值 = 0.02896)。但由模型1和模型2的组合可发现从解释rM的模型中移除FII的落後期是可能的。我们可以由此断定rM是FII的格兰杰原因,反之则不成立。

承继著回归模型的基本性质,格兰杰因果关系分析也假设实际值与预测值之间的误差呈正态分布,若实际现象不呈正态分布将严重影响推论的有效性。

Hacker & Hatemi-J (2006)发展出一种不必在乎误差项是否呈正态分布的格兰杰因果关系研究方法。这种方法在财金分析上特别实用, 因为许多金融变量不服从正态分布。

近来,Hacker & Hatemi-J (2012)又进一步改善之,提出一种非对称的因果关系检验模型,据说可以区分正向与负向影响的因果影响。

相关

  • 卫生福利部食品药物管理署卫生福利部食品药物管理署(简称食药署),是中华民国卫生福利部所属机关,成立于2010年1月1日,负责食品和药品的管理监督工作。区管中心从忠孝东路六段至昆阳街右转,沿昆阳街顺势再右
  • 姨父姨父,是中文中亲属关系的称谓,指母亲姊妹的丈夫。正式用语中通常称为姨丈,也称姨夫或姨爹。英文中,姨父与叔叔、伯伯、舅舅等统称为Uncle。
  • 沿岸漂砂沿岸流(英语:longshore current)是指波浪推向岸边,有时波峰列(波列)并不平行海岸线,两者形成的夹角,一波一波的波浪推动成一股贴岸而行的海流。近岸水流的流动方向与碎波区底床地形.
  • 四色视觉四色视觉(英语:Tetrachromacy)是指生物体拥有四种独立的感光通道,或指眼球中有四种感色的视锥细胞(较人类多出感应紫外线的锥状细胞),大部分鸟类具有此种特征。一般人类所绘制出的
  • d̪ð浊齿无咝塞擦音是一种辅音,被使用于一些口语中。国际音标写作⟨d͡ð⟩、⟨d͜ð⟩、⟨d̪͡ð⟩或⟨d̟͡ð⟩。此音常常是/ð/的同位异音。浊齿无咝塞擦音的特征包括:当符号
  • 盲人视障人士是指视觉有障碍的人。视障人士主要分为三类,以国际视力伤残程度分办,则分为B1(全失明)、B2(严重弱视,严重低视能)及B3(轻微弱视,轻微低视能)。一般在书面上都会使用较为尊重的
  • 质能方程E = mc²(即质能等价,亦称为质能转换公式、质能方程)是一种阐述能量(E)与质量(m)间相互关系的理论物理学公式,公式中的 c 是物理学中代表光速的常数。该公式表明物体相对于一个参照
  • 莱斯利·理查德·格罗夫斯莱斯利·理查德·格罗夫斯(英语:Leslie Richard Groves,1896年8月17日-1970年7月13日),美国陆军中将,1896年出生于美国纽约州奥尔巴尼。1918年毕业于美国西点军校。常年于美国陆军
  • Institut National de la Recherche Agronomique国家农业研究院(Institut National de la Recherche Agronomique,INRA, .mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Luci
  • 基努·里维斯基努·查尔斯·里维斯(英语:Keanu Charles Reeves,/kiˈɑːnuː/,kee-AH-noo;1964年9月2日-)是一位加拿大的男演员、导演、制片人和音乐家。出演过较有名的电影作品有《阿比和阿弟