展望理论

✍ dations ◷ 2025-11-24 08:31:25 #展望理论

展望理论(英文:prospect theory,也作前景理论,视野理论),是一个行为经济学的理论,为心理学教授丹尼尔·康纳曼和阿摩司·特沃斯基提出的。这个理论的假设之一是,每个人基于初始状况(参考点位置)的不同,对风险会有不同的态度。

此理论是行为经济学的重大成果之一。1970年代,卡内曼和特沃斯基系统地研究这一领域。长久以来,主流经济学都假设每个人作决定时都是“理性”的,然而现实情况并不如此;展望理论加入了人们对赚蚀、发生几率高低等条件的不对称心理效用,成功解释了许多看来不理性的现象。展望理论对分析在不确定情况下的人为判断和决策方面作出了突出贡献,卡内曼更因此获得2002年的诺贝尔经济学奖。

展望理论是描述性而非指示性的理论——它旨在解释现象,而非分析怎样作决策才是最好的。利用展望理论可以对风险与报酬的关系进行实证研究。

人在不确定条件下的决策选择,取决于结果与展望(预期、设想)的差距而非单单结果本身。即,人在决策时会在心里预设一个参考标准,然后衡量每个决定的结果,与这个参考标准的差别是多大。例如,一个人展望(预期)能得到奖金500元,当他的决策让他得到奖金500元,他会觉得没什么;若他有办法得到多于预期的500元,多数人会审慎地考量这方法(决策)带来的风险,以免失去展望(预期)回报;如果相反,即使他有另一个比较安全,但让他少得100元奖金的办法(决策),那多数人会宁可冒较大风险,以获取展望(预期)回报。

此理论是为改进博弈论中的期望效用假说而建立。它比较符合心理学观察结果,能比较写实地描述一个人,在风险决策(如金融投资)之时的心理。


假设一个人衡量决策得失的数学函数(PT函数)为: U = w ( p 1 ) v ( x 1 ) + w ( p 2 ) v ( x 2 ) + {\displaystyle U=w(p_{1})v(x_{1})+w(p_{2})v(x_{2})+\dots } ,当中 x 1 , x 2 , {\displaystyle x_{1},x_{2},\dots } 是各个可能结果, p 1 , p 2 , {\displaystyle p_{1},p_{2},\dots } 是这些结果发生的概率。 v {\displaystyle v} 是所谓“价值函数(value function)”,表示不同可能结果,在决策者心中的相对价值。根据本理论,价值函数的线,应当会穿过中间的“参考点(reference point)”,并形成一个如下的 s 型曲线:

它的不对称性表明,一个损失结果对应价值的绝对值,比获利结果对应价值的绝对值更大,也就是所谓的“损失厌恶性 (loss aversion)”。与期望效用假说不同,本理论衡量获利与损失的方法,并不考虑所的“绝对所得 (absolute wealth)”。函式 w {\displaystyle w} 是为“可能性比重函数 (probability weighting function)”,用以表达一般人对几率的反应 —— 一般而言,人对极不可能发生的事,会过度反应,而对中度、高度可能发生的事,会反应迟钝。

假设一个人打算买保险,设投保所保障项目,有1%的机会遇险;如果遇险,投保人的损失为$1,000;而保费为$15。我们引用展望理论前,先要设一个“参考点”,而它可能是:

若我们用“现有的财富状况”作参考点,投保人可以付保费$15,则“PT效用值(PT utility)”为 v ( 15 ) {\displaystyle v(-15)} ,而他的可能所得$0(可能性 99%),或者-$1,000(可能性1%)。整体PT效用值将为: w ( 0.01 ) × v ( 1000 ) + w ( 0.99 ) × v ( 0 ) = w ( 0.01 ) × v ( 1000 ) {\displaystyle w(0.01)\times v(-1000)+w(0.99)\times v(0)=w(0.01)\times v(-1000)} 。我们可以根据公式,计算出效用值的数值。一方面,由于 v {\displaystyle v} 在损失时具有凸性(convexity),所以 v ( 15 ) / v ( 1000 ) > 15 / 1000 = 0.015 {\displaystyle v(-15)/v(-1000)>15/1000=0.015} ;另一方面,人们对概率较低的事件会过度反应,所以 w ( 0.01 ) > 0.01 {\displaystyle w(0.01)>0.01} 。通常来讲,后一种效应的影响大到可以抵消前一种效应,即 w ( 0.01 ) × v ( 1000 ) < v ( 15 ) {\displaystyle w(0.01)\times v(-1000)<v(-15)} ,也即对低可能性风险事件的厌恶会超过保费带来的较小损失,这表示投保人会买保险。

第二种情况,若果我们用“损失$1,000”作为参考点,则投保人在 v ( 985 ) {\displaystyle v(985)} w ( 0.99 ) × v ( 1000 ) {\displaystyle w(0.99)\times v(1000)} 之间做选择。由于 v {\displaystyle v} 在获利时具有凹性(concavity),且人们会低估较高可能性事件的发生概率,导致令买保险看起来,比不买更吸引。这也表示投保人会买保险。

简言之,人在面临获利时,不愿冒风险;而在面临损失时,人人都成了冒险家。而损失和获利是相对于参照点而言的,改变评价事物时的参照点,就会改变对风险的态度。

相关

  • 广西医科大学广西医科大学是中国广西南宁市的一所全日制本科公办省属普通高等学校,以医学类专业为特色。1934年11月21日,广西省立医学院在南宁市创建。1940年校址迁至桂林。 1949年11月,改
  • 生物计量学生物统计学(有时也称生物计量学)是统计学的原理和方法在生物学研究中的应用,是一门应用数学,最常见的是应用于医学。在生物学、医学、农学等的研究中,合理地进行调查或实验设计,科
  • 搅拌棒搅拌棒,为一种化学实验设备,通常以玻璃或塑料制成。主要用于搅拌以加速化学实验中的溶解作用或使溶液混合均匀,过滤时引流,点测pH,蒸发时搅拌,引燃红磷等。
  • 水蒸汽水蒸气(也称氛气、蒸汽),是水(H2O)的气体形式。当水达到沸点时,水就变成水蒸气。水蒸气在空气中是无色的。在海平面一标准大气压下,水的沸点为100°C或212°F或373.15K。当水在沸点
  • 德国联邦经济合作及发展部德国联邦经济合作与发展部(德语:Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung)是德国联邦部委之一,位于波恩,于柏林设有第二办公室。联邦经济合作与
  • 行政院客家委员会客家委员会(简称客委会)为中华民国有关客家族群事务的最高主管机关,成立于2001年6月,其目标是复兴台湾日渐流失的客家文化,延续客家传统文化命脉,并打造台湾成为一个尊重多元族群
  • 减色法一个(减色法)模型解释了涂料、染料、墨水和天然色素的混合物产生的颜色,每个颜色会减去(即吸收)某些波长的光并向其他反射。表面所显示的颜色取决于它反映在电磁波谱的颜色。下面
  • 范特霍夫雅各布斯·亨里克斯·范托夫(荷兰语:Jacobus Henricus van 't Hoff,1852年8月30日-1911年3月11日),生于荷兰鹿特丹,逝于德国柏林,荷兰化学家,1901年获诺贝尔化学奖。1852年8月30日出
  • 里坡里坡(1928年7月23日-2013年3月31日),原名李庆章,天津市宝坻县大口屯镇镇北村人,中国男演员。1928年农历六月十四日出生于宝坻县大口屯镇镇北村。原为工厂学徒,在北平加入塞声剧社,成
  • 西湖醋鱼西湖醋鱼,中国名菜,又称活杀醋溜鱼,是杭州西湖一带的著名菜肴。以楼外楼酒店的最为有名。主料是新鲜的西湖鲤鱼、草鱼或鳜鱼。沿脊部剖开成相连的两片。以鲜汤煮约3分钟后捞出,