展望理论

✍ dations ◷ 2025-04-26 12:52:45 #展望理论

展望理论(英文:prospect theory,也作前景理论,视野理论),是一个行为经济学的理论,为心理学教授丹尼尔·康纳曼和阿摩司·特沃斯基提出的。这个理论的假设之一是,每个人基于初始状况(参考点位置)的不同,对风险会有不同的态度。

此理论是行为经济学的重大成果之一。1970年代,卡内曼和特沃斯基系统地研究这一领域。长久以来,主流经济学都假设每个人作决定时都是“理性”的,然而现实情况并不如此;展望理论加入了人们对赚蚀、发生几率高低等条件的不对称心理效用,成功解释了许多看来不理性的现象。展望理论对分析在不确定情况下的人为判断和决策方面作出了突出贡献,卡内曼更因此获得2002年的诺贝尔经济学奖。

展望理论是描述性而非指示性的理论——它旨在解释现象,而非分析怎样作决策才是最好的。利用展望理论可以对风险与报酬的关系进行实证研究。

人在不确定条件下的决策选择,取决于结果与展望(预期、设想)的差距而非单单结果本身。即,人在决策时会在心里预设一个参考标准,然后衡量每个决定的结果,与这个参考标准的差别是多大。例如,一个人展望(预期)能得到奖金500元,当他的决策让他得到奖金500元,他会觉得没什么;若他有办法得到多于预期的500元,多数人会审慎地考量这方法(决策)带来的风险,以免失去展望(预期)回报;如果相反,即使他有另一个比较安全,但让他少得100元奖金的办法(决策),那多数人会宁可冒较大风险,以获取展望(预期)回报。

此理论是为改进博弈论中的期望效用假说而建立。它比较符合心理学观察结果,能比较写实地描述一个人,在风险决策(如金融投资)之时的心理。


假设一个人衡量决策得失的数学函数(PT函数)为: U = w ( p 1 ) v ( x 1 ) + w ( p 2 ) v ( x 2 ) + {\displaystyle U=w(p_{1})v(x_{1})+w(p_{2})v(x_{2})+\dots } ,当中 x 1 , x 2 , {\displaystyle x_{1},x_{2},\dots } 是各个可能结果, p 1 , p 2 , {\displaystyle p_{1},p_{2},\dots } 是这些结果发生的概率。 v {\displaystyle v} 是所谓“价值函数(value function)”,表示不同可能结果,在决策者心中的相对价值。根据本理论,价值函数的线,应当会穿过中间的“参考点(reference point)”,并形成一个如下的 s 型曲线:

它的不对称性表明,一个损失结果对应价值的绝对值,比获利结果对应价值的绝对值更大,也就是所谓的“损失厌恶性 (loss aversion)”。与期望效用假说不同,本理论衡量获利与损失的方法,并不考虑所的“绝对所得 (absolute wealth)”。函式 w {\displaystyle w} 是为“可能性比重函数 (probability weighting function)”,用以表达一般人对几率的反应 —— 一般而言,人对极不可能发生的事,会过度反应,而对中度、高度可能发生的事,会反应迟钝。

假设一个人打算买保险,设投保所保障项目,有1%的机会遇险;如果遇险,投保人的损失为$1,000;而保费为$15。我们引用展望理论前,先要设一个“参考点”,而它可能是:

若我们用“现有的财富状况”作参考点,投保人可以付保费$15,则“PT效用值(PT utility)”为 v ( 15 ) {\displaystyle v(-15)} ,而他的可能所得$0(可能性 99%),或者-$1,000(可能性1%)。整体PT效用值将为: w ( 0.01 ) × v ( 1000 ) + w ( 0.99 ) × v ( 0 ) = w ( 0.01 ) × v ( 1000 ) {\displaystyle w(0.01)\times v(-1000)+w(0.99)\times v(0)=w(0.01)\times v(-1000)} 。我们可以根据公式,计算出效用值的数值。一方面,由于 v {\displaystyle v} 在损失时具有凸性(convexity),所以 v ( 15 ) / v ( 1000 ) > 15 / 1000 = 0.015 {\displaystyle v(-15)/v(-1000)>15/1000=0.015} ;另一方面,人们对概率较低的事件会过度反应,所以 w ( 0.01 ) > 0.01 {\displaystyle w(0.01)>0.01} 。通常来讲,后一种效应的影响大到可以抵消前一种效应,即 w ( 0.01 ) × v ( 1000 ) < v ( 15 ) {\displaystyle w(0.01)\times v(-1000)<v(-15)} ,也即对低可能性风险事件的厌恶会超过保费带来的较小损失,这表示投保人会买保险。

第二种情况,若果我们用“损失$1,000”作为参考点,则投保人在 v ( 985 ) {\displaystyle v(985)} w ( 0.99 ) × v ( 1000 ) {\displaystyle w(0.99)\times v(1000)} 之间做选择。由于 v {\displaystyle v} 在获利时具有凹性(concavity),且人们会低估较高可能性事件的发生概率,导致令买保险看起来,比不买更吸引。这也表示投保人会买保险。

简言之,人在面临获利时,不愿冒风险;而在面临损失时,人人都成了冒险家。而损失和获利是相对于参照点而言的,改变评价事物时的参照点,就会改变对风险的态度。

相关

  • 马其顿王国马其顿王国(古希腊语:Μακεδονία)是古希腊西北部的王国。其史上最辉煌的时期即为亚历山大大帝开创的亚历山大帝国(马其顿帝国)。亚历山大帝国是历史上继波斯帝国之后第二
  • 碳化钨碳化钨是由钨和碳组成的化合物,化学式为WC,英文为Tungsten Carbide,也常简称为Carbide(实际上carbide是碳化物的统称)。碳化钨的硬度极高,莫氏硬度为8.5~9,且熔点达到2870°C,电阻亦
  • 非特异性免疫先天免疫系统(英语:Innate immunity)又称为非特异性免疫、固有免疫、非专一性防御,包括一系列的细胞及相关机制,可以以非特异性的方式抵御外来感染。先天免疫系统的细胞会非特异
  • BASICBASIC(来自英语:Beginner's All-purpose Symbolic Instruction Code的缩写)又译培基,是一种直译式程序设计语言。名称的字面意思为“初学者的全方位符式指令代码”,设计给初学者
  • 啤酒纯度的规定啤酒纯酿法(德语:Reinheitsgebot)是德国的一项关于啤酒成分的法令,该法令的前身可追溯至中世纪的神圣罗马帝国及1516年的巴伐利亚公国。啤酒纯酿法的主要内容是限制啤酒的成分,只
  • 应用地貌学应用地貌学是地貌学的一个分支,利用地貌学的理论和研究手段,为具体的生产目的服务,根据其应用的目的不同,可以分为:等
  • 赤德松赞赤德松赞(藏语:.mw-parser-output .uchen{font-family:"Qomolangma-Dunhuang","Qomolangma-Uchen Sarchen","Qomolangma-Uchen Sarchung","Qomolangma-Uchen Suring","Qomolan
  • Kopitiam邻里咖啡店或传统咖啡店(马来语:Kopitiam)是一种结合传统早餐和咖啡店的东南亚流行饮食文化,Kopitiam一词是结合马来语中的咖啡(kopi)和福建话中的店(白话字:tiàm)而成的混合词。典
  • 陈达陈达可以指:
  • 国营国营广播是指由国家经营的广播机构或服务,在法律上可以行使国家权力,对国民进行主要宣传的统治性广播方式。国营广播大多分布在发展中国家、欧洲各国以及20世纪中后期的东方集