展望理论

✍ dations ◷ 2025-04-02 08:59:08 #展望理论

展望理论(英文:prospect theory,也作前景理论,视野理论),是一个行为经济学的理论,为心理学教授丹尼尔·康纳曼和阿摩司·特沃斯基提出的。这个理论的假设之一是,每个人基于初始状况(参考点位置)的不同,对风险会有不同的态度。

此理论是行为经济学的重大成果之一。1970年代,卡内曼和特沃斯基系统地研究这一领域。长久以来,主流经济学都假设每个人作决定时都是“理性”的,然而现实情况并不如此;展望理论加入了人们对赚蚀、发生几率高低等条件的不对称心理效用,成功解释了许多看来不理性的现象。展望理论对分析在不确定情况下的人为判断和决策方面作出了突出贡献,卡内曼更因此获得2002年的诺贝尔经济学奖。

展望理论是描述性而非指示性的理论——它旨在解释现象,而非分析怎样作决策才是最好的。利用展望理论可以对风险与报酬的关系进行实证研究。

人在不确定条件下的决策选择,取决于结果与展望(预期、设想)的差距而非单单结果本身。即,人在决策时会在心里预设一个参考标准,然后衡量每个决定的结果,与这个参考标准的差别是多大。例如,一个人展望(预期)能得到奖金500元,当他的决策让他得到奖金500元,他会觉得没什么;若他有办法得到多于预期的500元,多数人会审慎地考量这方法(决策)带来的风险,以免失去展望(预期)回报;如果相反,即使他有另一个比较安全,但让他少得100元奖金的办法(决策),那多数人会宁可冒较大风险,以获取展望(预期)回报。

此理论是为改进博弈论中的期望效用假说而建立。它比较符合心理学观察结果,能比较写实地描述一个人,在风险决策(如金融投资)之时的心理。


假设一个人衡量决策得失的数学函数(PT函数)为: U = w ( p 1 ) v ( x 1 ) + w ( p 2 ) v ( x 2 ) + {\displaystyle U=w(p_{1})v(x_{1})+w(p_{2})v(x_{2})+\dots } ,当中 x 1 , x 2 , {\displaystyle x_{1},x_{2},\dots } 是各个可能结果, p 1 , p 2 , {\displaystyle p_{1},p_{2},\dots } 是这些结果发生的概率。 v {\displaystyle v} 是所谓“价值函数(value function)”,表示不同可能结果,在决策者心中的相对价值。根据本理论,价值函数的线,应当会穿过中间的“参考点(reference point)”,并形成一个如下的 s 型曲线:

它的不对称性表明,一个损失结果对应价值的绝对值,比获利结果对应价值的绝对值更大,也就是所谓的“损失厌恶性 (loss aversion)”。与期望效用假说不同,本理论衡量获利与损失的方法,并不考虑所的“绝对所得 (absolute wealth)”。函式 w {\displaystyle w} 是为“可能性比重函数 (probability weighting function)”,用以表达一般人对几率的反应 —— 一般而言,人对极不可能发生的事,会过度反应,而对中度、高度可能发生的事,会反应迟钝。

假设一个人打算买保险,设投保所保障项目,有1%的机会遇险;如果遇险,投保人的损失为$1,000;而保费为$15。我们引用展望理论前,先要设一个“参考点”,而它可能是:

若我们用“现有的财富状况”作参考点,投保人可以付保费$15,则“PT效用值(PT utility)”为 v ( 15 ) {\displaystyle v(-15)} ,而他的可能所得$0(可能性 99%),或者-$1,000(可能性1%)。整体PT效用值将为: w ( 0.01 ) × v ( 1000 ) + w ( 0.99 ) × v ( 0 ) = w ( 0.01 ) × v ( 1000 ) {\displaystyle w(0.01)\times v(-1000)+w(0.99)\times v(0)=w(0.01)\times v(-1000)} 。我们可以根据公式,计算出效用值的数值。一方面,由于 v {\displaystyle v} 在损失时具有凸性(convexity),所以 v ( 15 ) / v ( 1000 ) > 15 / 1000 = 0.015 {\displaystyle v(-15)/v(-1000)>15/1000=0.015} ;另一方面,人们对概率较低的事件会过度反应,所以 w ( 0.01 ) > 0.01 {\displaystyle w(0.01)>0.01} 。通常来讲,后一种效应的影响大到可以抵消前一种效应,即 w ( 0.01 ) × v ( 1000 ) < v ( 15 ) {\displaystyle w(0.01)\times v(-1000)<v(-15)} ,也即对低可能性风险事件的厌恶会超过保费带来的较小损失,这表示投保人会买保险。

第二种情况,若果我们用“损失$1,000”作为参考点,则投保人在 v ( 985 ) {\displaystyle v(985)} w ( 0.99 ) × v ( 1000 ) {\displaystyle w(0.99)\times v(1000)} 之间做选择。由于 v {\displaystyle v} 在获利时具有凹性(concavity),且人们会低估较高可能性事件的发生概率,导致令买保险看起来,比不买更吸引。这也表示投保人会买保险。

简言之,人在面临获利时,不愿冒风险;而在面临损失时,人人都成了冒险家。而损失和获利是相对于参照点而言的,改变评价事物时的参照点,就会改变对风险的态度。

相关

  • 玛丽安娜玛丽安娜(法语:Marianne),是法兰西共和国的国家象征。就其外延意义而言,她还是自由与理性的拟人表现。与代表法兰西民族及其历史、国土与文化的“高卢雄鸡”相对,玛丽安娜代表了作
  • 明长城明长城,为明朝从洪武帝至万历帝的二百多年,经过20次大规模的修建,筑成的一条西起甘肃嘉峪关,东至辽东虎山,全长8851.8公里的长城。这也是现在所见到的大部分完整长城。明太祖朱元
  • 热寂热寂(英语:Heat death of the universe)是猜想宇宙终极命运的一种假说。根据热力学第二定律,作为一个“孤立”的系统,宇宙的熵会随着时间的流异而增加,由有序向无序,当宇宙的熵达到
  • 李查维尼波罗国(尼泊尔语:लिच्छवी वंश,转写:Licchavī vanśa,直译“离车毗王朝”)是尼泊尔第一个有明文记录王朝,从约公元400年存续至750年,由离车族(英语:Licchavi (clan))(Liccha
  • 西草净西草净(英语:simetryn)是一种含硫均三嗪类除草剂,1,3,5-三嗪环的三个C原子分别连接一个硫醚和两个乙氨基,抑制植物的光合作用,从而阻断杂草的生长。它可由2-氯-4,6-二(乙氨基)-1,3
  • 煤炭气化煤气化(英语:coal gasification)是指在一定温度与压力条件下用气化剂(如水蒸气、氧气、空气等)将固体煤中的有机物转化为合成气的化学加工过程。合成气中主要包含一氧化碳、氢气
  • 正弦曲线正弦曲线或正弦波(Sinusoid/Sine wave)是一种来自数学三角函数中的正弦比例的曲线。也是模拟信号的代表,与代表数字信号的方波相对。正弦曲线的形状就像完美的海上波浪般,以三角
  • M116M116榴弹炮(M116 howitzer(1962年改名)、75mm Pack Howitzer M1、75mm Pack Howitzer M1A1、七五山炮)在第二次世界大战时被称为“M1A1榴弹炮”,由于它可以被拆开成为6个部分分
  • 纳弗沙岛纳瓦萨岛(英语:Navassa Island、海地克里奥尔语:Lanavaz)是加勒比海无人居住的小岛,是美国的非建制领土,海地亦宣称所有。纳瓦萨岛面积大约5.2平方公里(2平方英里)。岛的经度和纬度
  • 树立党的唯一思想体系十大原则《确立党的唯一思想体系十大原则》(朝鲜语:당의 유일사상체계확립의 10대 원칙/黨의 唯一思想體系確立의 10大 原則)是朝鲜劳动党在1974年为贯彻其唯一思想体系所颁布的纲领性文