矩问题

✍ dations ◷ 2025-06-09 18:42:24 #数学分析,数学问题,测度论,实分析

数学上,矩问题询问是否可以由一个测度 μ 的矩序列

确定该测度。更一般地,亦可考虑序列

其中 为任意一列函数。

最典型的例子中,μ 取为实数线上的测度,并取 为序列 { : = 0, 1, 2, ... }. 此种矩问题源自概率论,其意义为:是否存在一个概率测度,其平均数、方差等组成的序列等于给定的序列,又及该测度是否唯一。

矩问题当中,有三种以人名命名,分别为:允许 μ 的支撑集为全条实轴的Hamburger 矩问题(英语:Hamburger moment problem)、支撑集为 ) 的豪斯多夫矩问题(英语:Hausdorff moment problem)。

一个序列 为某个测度 的矩,当且仅当其汉克尔矩阵 ,

为半正定。 这是因为一个半正定的汉克尔矩阵对应一个线性泛函 Λ {\displaystyle \Lambda } , ] 上,测度 μ {\displaystyle \mu } 为以 为支撑的测度 μ 的矩,则

() ≥ 0 对任意在 上非负的多项式 都成立。

 

 

 

 

(1)

反之,如果 (1) 为真,则可运用M. 里斯扩展定理(英语:M. Riesz extension theorem)将 ϕ {\displaystyle \phi } 0() 上的线性泛函,其满足

φ ( f ) 0 f C 0 ( ) , f 0 {\displaystyle \qquad \varphi (f)\geq 0\quad \forall f\in C_{0}(),\;f\geq 0} , ] 为支撑的测度 ,使得

对任意的 ∈ 0() 成立。

由此可见, μ {\displaystyle \mu } , ] 上的非负多项式的表示定理,即可将 (1) 写成一个关于汉克尔矩阵的条件。

详见 Shohat & Tamarkin 1943 和 Krein & Nudelman 1977 。

豪斯多夫矩问题中,可由魏尔斯特拉斯逼近定理得到 μ 的唯一性。该定理断言: 上的连续函数集中,在一致范数的意义下,多项式集是稠密的。至于在无穷区间上的矩问题,唯一性是一个更深入的问题。参见 Carleman 条件(英语:Carleman's condition)(1922)、Krein 条件(英语:Krein's condition) (1940s) 和 Akhiezer(1965).

矩问题的一个重要变式是截尾矩问题,其研究具有给定前 (不为无穷大)阶矩的测度的性质。截尾矩问题的研究成果,可以应用在极值问题、优化理论,以及概率论的极限定理上。 参见: 切比雪夫–马可夫–斯蒂尔吉斯不等式(英语:Chebyshev–Markov–Stieltjes inequalities) 和 Krein & Nudelman 1977.

相关

  • 罹病率疾病是生物在一定原因的损害性作用下,因自稳调节紊乱而发生的异常生命活动过程,是特定的异常病理情形,而且会影响生物体的部分或是所有器官。一般会解释为“身体病况”(medical
  • 英国国防部国防部(英语:Ministry of Defence,缩写作 MoD)是负责履行英国政府国家防务政策的政府部门,也是英国军队的上级业务单位。英国国防部申明的主要目标是保卫英国及其利益,并加强国际
  • 戴金星戴金星(1935年3月19日-),又名金声、步文,笔名王霞川,浙江瑞安人,石油天然气地质学和地球化学专家,中国科学院院士。戴金星于1956年考入南京大学地质系大地构造专业。1961年毕业后任
  • 纽芬兰纪念大学纽芬兰纪念大学(英语: Memorial University of Newfoundland,通常简称 Memorial University 或MUN)是一所加拿大纽芬兰与拉布拉多省的无宗教背景的公立综合性学校。该校是加拿
  • 北塞浦路斯土耳其共和国面积以下资讯是以2011年估计家用电源国家领袖国内生产总值(国际汇率) 以下资讯是以2014年估计立国历史北塞浦路斯土耳其共和国(Kuzey Kıbrıs Türk Cumhuriyeti,缩写为KKTC) 通
  • 抑制免疫疗法免疫抑制(英语:immunosuppression)是指对于免疫应答的抑制作用。免疫抑制可由天然或人为因素导致。天然免疫抑制包括天然免疫耐受,机体可能会对自身组织成分不产生免疫应答。人
  • 默塞德默塞德(英语:Merced)是一个位于美国加利福尼亚州中部圣华金谷地区 (San Joaquin Valley) 的城市,也是同名县份默塞德县 (Merced County) 的县府。根据2000年人口普查,共有人口7万
  • A22高速公路 (意大利)A22高速公路(意大利语:Autostrada A22),又称布伦内罗高速公路(Autostrada Brennero、Autobrennero、德语:Brennerautobahn),是意大利一条高速公路,自波河畔的摩德纳,往北经曼托瓦、维
  • 火山碎屑火山碎屑是一种空气坠落材料,由火山爆发所导致,不管其构成或大小。火山灰主要为流纹岩,在构成里因为多数易爆的火山是更黏的felsic或高的硅土岩浆的产品。火山碎屑的发行跟随爆
  • 久保亘久保亘(1929年1月15日-2003年6月24日),日本政治人物。曾任参议院议员(4期)、鹿儿岛县议会议员(3期)、副总理(第1次桥本内阁)、大藏大臣(第92代)、日本社会党书记长、社会民主党副党首、