全等三角形

✍ dations ◷ 2024-12-22 19:48:51 #全等三角形
全等三角形指两个全等的三角形,它们的三条边及三个角都应对等。全等三角形是几何中全等之一。根据全等转换,两个全等三角形可以平移、旋转、把轴对称,或重叠等。全等的数学符号为: ≅ {displaystyle cong }当使用该符号时,需保证符号两边的角、边一一对应。当两个三角形的对应边及角,完全相等,便是全等三角形。全等三角形有以下性质:若三角形ABC与三角形DEF是全等时(如右图),关系公式为:下列三对边长为“对应边”:下列三对角为“对应角”:同时,所有对应边长及角度均相等:因为多边形可由多个三角形组成,所以利用此方法,亦可验证其它全等的多边形。下列五种方法均可验证全等三角形:下列两种方法不能验证为全等三角形:以上的各方法也可通过三角函数的相关定理证明。这相当于解三角形,即三条边三个角一共六个量、固定其中三个而判断剩下三个量是否有唯一解。如右图△ A B C ≅ △ C D A {displaystyle triangle ABCcong triangle CDA,!} 此时三边已知,三个角可分别由余弦定理计算,由于 cos ⁡ {displaystyle cos {}} 在 0°到 180°之间是单调的所以 arccos ⁡ {displaystyle arccos {}} 可保证解出唯一值。如右图△ A B C ≅ △ A D C {displaystyle triangle ABCcong triangle ADC,!} 此时两边夹一角已知,首先用余弦定理计算第三边,接下来与 SSS 的情况相同。如右图△ A B C ≅ △ A E D {displaystyle triangle ABCcong triangle AED,!} 此时两角夹一边已知,通过三角形内角和得到第三角后用正弦定理计算剩下两边。如右图△ A B E ≅ △ D C E {displaystyle triangle ABEcong triangle DCE,!} 仍然是做减法得出第三角,接下来与 ASA 相同。为直角三角形中专用的三角型全等性质 ,即为直角三角形中的SSA ,也称为斜股性质 ,如右图△ A B C ≅ △ D F E {displaystyle triangle ABCcong triangle DFE,!} 勾股定理或是直接连两边的顶端解出剩下一边,即变成 SSS或SAS。AAA(角、角、角),指两个三角形的任何三个角都对应地相同。但这不能判定全等三角形,但AAA能判定相似三角形。在几何学上,当两条线叠在一起时,便会形一个点和一个角。而且,若该线无限地廷长,或无限地放大,该角度都不会改变。同理,在左图中,该两个三角形是相似三角形,这两个三角形的关系是放大缩小,因此角度不会改变。这样,便能得知若边无限地根据比例加长,角度都保持不变。因此,AAA并不能判定全等三角形。从正弦定理的角度看, a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 R {displaystyle {frac {a}{sin {alpha }}}={frac {b}{sin {beta }}}={frac {c}{sin {gamma }}}=2R} 这个比例的比值可以任意缩放,因此无法唯一确定三边长度。SSA(边、边、角),也称为ASS ,指两个三角形的任一角及另外两个没有夹着该角的边相等。但这不能判定全等三角形。在右图中,分别有三角形ABC及三角形DEF,并提供了以下资讯:那即是SSA。假如在右图绘画一个圆形,中心点为点E,半径为 E F ¯ {displaystyle {overline {EF}}} 。透过这个圆形便会发现, ∠ E D F {displaystyle angle EDF} 和 D E ¯ {displaystyle {overline {DE}}} 没有改变下,会出现另一个与 E F ¯ {displaystyle {overline {EF}}} 一样长度的直线(即图中的 E G ¯ {displaystyle {overline {EG}}} )。这样便能证明SSA并不能验证全等三角形,(除非已知 B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} 。当是直角三角形时应称为RHS)。虽然如此,当 ∠ B A C {displaystyle angle BAC} ≥ 90°时, ∠ B A C > ∠ A C B {displaystyle angle BAC>angle ACB} 。又 ∠ B A C > ∠ A C B {displaystyle angle BAC>angle ACB} ⇔ B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} , B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} ,故可验证全等三角形。再次使用正弦定理, a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 R {displaystyle {frac {a}{sin {alpha }}}={frac {b}{sin {beta }}}={frac {c}{sin {gamma }}}=2R} 其中已知 a = D E ¯ {displaystyle a={overline {DE}}} 、 c = E G ¯ = E F ¯ {displaystyle c={overline {EG}}={overline {EF}}} 和 α = ∠ D {displaystyle alpha =angle D} ,可解出 sin ⁡ γ {displaystyle sin {gamma }} ,但 sin ⁡ {displaystyle sin {}} 在 0°到 180°上先升后降导致 arcsin ⁡ {displaystyle arcsin {}} 有两解,即 γ {displaystyle gamma } 可能是钝角或锐角(或退化为只有一解是直角的特殊情况,此处略去),分别对应图中的 ∠ D G E {displaystyle angle DGE} 和 ∠ D F E {displaystyle angle DFE} 。然而若已知该三角形是直角或钝角三角形时,可以视情况排除掉其中的一个解、进而唯一确定 γ {displaystyle gamma } ,此时做减法得出 β {displaystyle beta } 后即可用余弦定理解得最后一边 B {displaystyle B} 。

相关

  • 身份认同身份认同是心理学和社会学的一个概念,指一个人对于自我特性的表现,以及与某一群体之间所共有观念(国籍或者文化)的表现。身份认同的类型大致可分为:拒绝、漂流、搜寻、保卫和坚定
  • 奥古斯塔MV AGUSTA(中文名“奥古斯塔”)是一家意大利的摩托车制造商。Count Domenico Agusta在1945年以小排气量的二行程车起家,创立了 Moto Verg-hera Agusta(简称 MV AGUSTA)·他热爱赛
  • FeCOsub3/sub碳酸亚铁是一种无机化合物,化学式为FeCO3。碳酸亚铁可以利用水热法,由硫酸亚铁和尿素于160℃在反应釜中反应得到。硫酸亚铁和碳酸钠的反应亦可得到碳酸亚铁:碳酸亚铁不溶于水,但
  • 隐存种隐存种(cryptic species complex)又称姐妹种(sibling species),是指一组物种,他们符合生物学对于物种的定义,也就是说彼此不能够交配繁殖,但他们在形态学上是非常相似的,甚至有些时候
  • 土耳其航空981号班机空难土耳其航空981号班机空难是指于1974年3月3日坠毁的一架土耳其航空机身编号TC-JAV的麦道DC-10客机,机上全部346人在此次事故中罹难。981号班机于当天早上11时从土耳其伊斯坦布
  • 伊比利亚人伊比利亚人(拉丁语:Hibērii,源自希腊语:Ιβηρία)这个概念,在语言学和地理学上有着不同的含义。在语言学,特别是历史比较语言学当中,伊比利亚人指的是那些以伊比利亚语为母语的
  • 大马士革玫瑰突厥蔷薇(学名:Rosa x damascena)为蔷薇科蔷薇属下的一个杂交种,也叫大马士革蔷薇或大马士革玫瑰(Damask rose),或有时被称为 the rose of Castile,杂交自法国蔷薇(Rosa gallica)和 麝
  • 安宁病房安宁病房或宁养中心是指进行安宁缓和医疗(临终关怀)的病房或医院,一般是针对癌症末期或绝症、治疗已不容易再见效的病者。安宁照护这个观点在11世纪的西方社会就被提出。安宁病
  • 加文·胡德加文·胡德(英语:Gavin Hood,1963年5月12日-)是一位南非男导演、编剧、制片人和演员,以编剧和导演的奥斯卡最佳外语片《黑帮暴徒》(2005年)而知名。他是20世纪福克斯电影《X战警前传
  • 佛 伦佛伦(满语:ᡶᠣᡵᠣᠨ,穆麟德:foron,17世纪?-1701年),满洲正白旗,舒穆禄氏,清朝官员,曾任工部尚书。佛伦由笔帖式转任兵部主事。康熙二十四年(1685年),任左都御史。康熙二十五年(1686年)六月