首页 >
全等三角形
✍ dations ◷ 2025-11-30 11:26:09 #全等三角形
全等三角形指两个全等的三角形,它们的三条边及三个角都应对等。全等三角形是几何中全等之一。根据全等转换,两个全等三角形可以平移、旋转、把轴对称,或重叠等。全等的数学符号为:
≅
{displaystyle cong }当使用该符号时,需保证符号两边的角、边一一对应。当两个三角形的对应边及角,完全相等,便是全等三角形。全等三角形有以下性质:若三角形ABC与三角形DEF是全等时(如右图),关系公式为:下列三对边长为“对应边”:下列三对角为“对应角”:同时,所有对应边长及角度均相等:因为多边形可由多个三角形组成,所以利用此方法,亦可验证其它全等的多边形。下列五种方法均可验证全等三角形:下列两种方法不能验证为全等三角形:以上的各方法也可通过三角函数的相关定理证明。这相当于解三角形,即三条边三个角一共六个量、固定其中三个而判断剩下三个量是否有唯一解。如右图△
A
B
C
≅
△
C
D
A
{displaystyle triangle ABCcong triangle CDA,!}
此时三边已知,三个角可分别由余弦定理计算,由于
cos
{displaystyle cos {}}
在 0°到 180°之间是单调的所以
arccos
{displaystyle arccos {}}
可保证解出唯一值。如右图△
A
B
C
≅
△
A
D
C
{displaystyle triangle ABCcong triangle ADC,!}
此时两边夹一角已知,首先用余弦定理计算第三边,接下来与 SSS 的情况相同。如右图△
A
B
C
≅
△
A
E
D
{displaystyle triangle ABCcong triangle AED,!}
此时两角夹一边已知,通过三角形内角和得到第三角后用正弦定理计算剩下两边。如右图△
A
B
E
≅
△
D
C
E
{displaystyle triangle ABEcong triangle DCE,!}
仍然是做减法得出第三角,接下来与 ASA 相同。为直角三角形中专用的三角型全等性质 ,即为直角三角形中的SSA ,也称为斜股性质 ,如右图△
A
B
C
≅
△
D
F
E
{displaystyle triangle ABCcong triangle DFE,!}
勾股定理或是直接连两边的顶端解出剩下一边,即变成 SSS或SAS。AAA(角、角、角),指两个三角形的任何三个角都对应地相同。但这不能判定全等三角形,但AAA能判定相似三角形。在几何学上,当两条线叠在一起时,便会形一个点和一个角。而且,若该线无限地廷长,或无限地放大,该角度都不会改变。同理,在左图中,该两个三角形是相似三角形,这两个三角形的关系是放大缩小,因此角度不会改变。这样,便能得知若边无限地根据比例加长,角度都保持不变。因此,AAA并不能判定全等三角形。从正弦定理的角度看,
a
sin
α
=
b
sin
β
=
c
sin
γ
=
2
R
{displaystyle {frac {a}{sin {alpha }}}={frac {b}{sin {beta }}}={frac {c}{sin {gamma }}}=2R}
这个比例的比值可以任意缩放,因此无法唯一确定三边长度。SSA(边、边、角),也称为ASS ,指两个三角形的任一角及另外两个没有夹着该角的边相等。但这不能判定全等三角形。在右图中,分别有三角形ABC及三角形DEF,并提供了以下资讯:那即是SSA。假如在右图绘画一个圆形,中心点为点E,半径为
E
F
¯
{displaystyle {overline {EF}}}
。透过这个圆形便会发现,
∠
E
D
F
{displaystyle angle EDF}
和
D
E
¯
{displaystyle {overline {DE}}}
没有改变下,会出现另一个与
E
F
¯
{displaystyle {overline {EF}}}
一样长度的直线(即图中的
E
G
¯
{displaystyle {overline {EG}}}
)。这样便能证明SSA并不能验证全等三角形,(除非已知
B
C
¯
>
A
B
¯
{displaystyle {overline {BC}}>{overline {AB}}}
。当是直角三角形时应称为RHS)。虽然如此,当
∠
B
A
C
{displaystyle angle BAC}
≥ 90°时,
∠
B
A
C
>
∠
A
C
B
{displaystyle angle BAC>angle ACB}
。又
∠
B
A
C
>
∠
A
C
B
{displaystyle angle BAC>angle ACB}
⇔
B
C
¯
>
A
B
¯
{displaystyle {overline {BC}}>{overline {AB}}}
,
B
C
¯
>
A
B
¯
{displaystyle {overline {BC}}>{overline {AB}}}
,故可验证全等三角形。再次使用正弦定理,
a
sin
α
=
b
sin
β
=
c
sin
γ
=
2
R
{displaystyle {frac {a}{sin {alpha }}}={frac {b}{sin {beta }}}={frac {c}{sin {gamma }}}=2R}
其中已知
a
=
D
E
¯
{displaystyle a={overline {DE}}}
、
c
=
E
G
¯
=
E
F
¯
{displaystyle c={overline {EG}}={overline {EF}}}
和
α
=
∠
D
{displaystyle alpha =angle D}
,可解出
sin
γ
{displaystyle sin {gamma }}
,但
sin
{displaystyle sin {}}
在 0°到 180°上先升后降导致
arcsin
{displaystyle arcsin {}}
有两解,即
γ
{displaystyle gamma }
可能是钝角或锐角(或退化为只有一解是直角的特殊情况,此处略去),分别对应图中的
∠
D
G
E
{displaystyle angle DGE}
和
∠
D
F
E
{displaystyle angle DFE}
。然而若已知该三角形是直角或钝角三角形时,可以视情况排除掉其中的一个解、进而唯一确定
γ
{displaystyle gamma }
,此时做减法得出
β
{displaystyle beta }
后即可用余弦定理解得最后一边
B
{displaystyle B}
。
相关
- 霰.mw-parser-output ruby.zy{text-align:justify;text-justify:none}.mw-parser-output ruby.zy>rp{user-select:none}.mw-parser-output ruby.zy>rt{font-feature-settings:
- 前卫摇滚前卫摇滚(英语:Progressive rock),简称为prog,有时被称为艺术摇滚或古典摇滚或交响摇滚,是在1960年晚期兴起的摇滚乐分支之一,它的内涵十分复杂并且吸纳众多其他乐派精神,因此并不能
- 纽约邮报纽约邮报(英语:New York Post)是一份美国的日报,主要在纽约市和周边地区分销。这是在美国第13份最悠久和第7份最广为发行的报纸。创办于1801年,由联邦党和开国元勋亚历山大·汉密
- 外汇储备外汇储备,又称外汇存底,是一个国家或经济体的央行持有并可随时兑换他国货币的资产,通常以美元计算。狭义而言,外汇储备指一个国家或经济体的外汇累积;广义而言,指以外汇计价的总资
- 叙尔特岛叙尔特岛(德语:Sylt,德语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Ge
- 达勒姆达勒姆(英语:Durham,又译德罕)是一座位于美国北卡罗来纳州达勒姆县的城市,也是该县的县治所在地。达勒姆是美国东岸的大学城之一,著名的私立学校杜克大学就位于该市。人口204,845
- 溜溜球式节食溜溜球式节食指节食后变瘦,然后反弹,又开始节食变瘦,又反弹,对身体伤害大的减肥方式,容易造成女性不孕。 溜溜球节食(Yo-yo dieting )或者溜溜球效应,也被称为体重循环。 “溜溜球
- 亚当·密茨凯维奇亚当·密茨凯维奇(Adam Mickiewicz,1798年12月24日-1855年11月26日),波兰浪漫主义的代表诗人。密茨凯维奇出生在新格鲁多克附近的庄园。
- 小煤炭菌目小煤炱目(学名:Meliolales)是一类专性寄生菌,属于子囊菌门粪壳菌纲。该目下有一单科小煤炱科(Meliolaceae)。主要在热带地区出现,小煤炱菌会在寄主植物的表面形成黑色菌落,故又被称
- 罗禅征伐罗禅征伐(朝鲜文:나선정벌/라선정벌);(俄文:Сражение на Сунгари)发生于1654年和1658年,朝鲜王朝应清朝要求,派出鸟铳手讨伐沙俄(朝鲜称“罗禅”)哥萨克军队的战争。
