全等三角形

✍ dations ◷ 2025-10-20 12:02:20 #全等三角形
全等三角形指两个全等的三角形,它们的三条边及三个角都应对等。全等三角形是几何中全等之一。根据全等转换,两个全等三角形可以平移、旋转、把轴对称,或重叠等。全等的数学符号为: ≅ {displaystyle cong }当使用该符号时,需保证符号两边的角、边一一对应。当两个三角形的对应边及角,完全相等,便是全等三角形。全等三角形有以下性质:若三角形ABC与三角形DEF是全等时(如右图),关系公式为:下列三对边长为“对应边”:下列三对角为“对应角”:同时,所有对应边长及角度均相等:因为多边形可由多个三角形组成,所以利用此方法,亦可验证其它全等的多边形。下列五种方法均可验证全等三角形:下列两种方法不能验证为全等三角形:以上的各方法也可通过三角函数的相关定理证明。这相当于解三角形,即三条边三个角一共六个量、固定其中三个而判断剩下三个量是否有唯一解。如右图△ A B C ≅ △ C D A {displaystyle triangle ABCcong triangle CDA,!} 此时三边已知,三个角可分别由余弦定理计算,由于 cos ⁡ {displaystyle cos {}} 在 0°到 180°之间是单调的所以 arccos ⁡ {displaystyle arccos {}} 可保证解出唯一值。如右图△ A B C ≅ △ A D C {displaystyle triangle ABCcong triangle ADC,!} 此时两边夹一角已知,首先用余弦定理计算第三边,接下来与 SSS 的情况相同。如右图△ A B C ≅ △ A E D {displaystyle triangle ABCcong triangle AED,!} 此时两角夹一边已知,通过三角形内角和得到第三角后用正弦定理计算剩下两边。如右图△ A B E ≅ △ D C E {displaystyle triangle ABEcong triangle DCE,!} 仍然是做减法得出第三角,接下来与 ASA 相同。为直角三角形中专用的三角型全等性质 ,即为直角三角形中的SSA ,也称为斜股性质 ,如右图△ A B C ≅ △ D F E {displaystyle triangle ABCcong triangle DFE,!} 勾股定理或是直接连两边的顶端解出剩下一边,即变成 SSS或SAS。AAA(角、角、角),指两个三角形的任何三个角都对应地相同。但这不能判定全等三角形,但AAA能判定相似三角形。在几何学上,当两条线叠在一起时,便会形一个点和一个角。而且,若该线无限地廷长,或无限地放大,该角度都不会改变。同理,在左图中,该两个三角形是相似三角形,这两个三角形的关系是放大缩小,因此角度不会改变。这样,便能得知若边无限地根据比例加长,角度都保持不变。因此,AAA并不能判定全等三角形。从正弦定理的角度看, a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 R {displaystyle {frac {a}{sin {alpha }}}={frac {b}{sin {beta }}}={frac {c}{sin {gamma }}}=2R} 这个比例的比值可以任意缩放,因此无法唯一确定三边长度。SSA(边、边、角),也称为ASS ,指两个三角形的任一角及另外两个没有夹着该角的边相等。但这不能判定全等三角形。在右图中,分别有三角形ABC及三角形DEF,并提供了以下资讯:那即是SSA。假如在右图绘画一个圆形,中心点为点E,半径为 E F ¯ {displaystyle {overline {EF}}} 。透过这个圆形便会发现, ∠ E D F {displaystyle angle EDF} 和 D E ¯ {displaystyle {overline {DE}}} 没有改变下,会出现另一个与 E F ¯ {displaystyle {overline {EF}}} 一样长度的直线(即图中的 E G ¯ {displaystyle {overline {EG}}} )。这样便能证明SSA并不能验证全等三角形,(除非已知 B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} 。当是直角三角形时应称为RHS)。虽然如此,当 ∠ B A C {displaystyle angle BAC} ≥ 90°时, ∠ B A C > ∠ A C B {displaystyle angle BAC>angle ACB} 。又 ∠ B A C > ∠ A C B {displaystyle angle BAC>angle ACB} ⇔ B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} , B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} ,故可验证全等三角形。再次使用正弦定理, a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 R {displaystyle {frac {a}{sin {alpha }}}={frac {b}{sin {beta }}}={frac {c}{sin {gamma }}}=2R} 其中已知 a = D E ¯ {displaystyle a={overline {DE}}} 、 c = E G ¯ = E F ¯ {displaystyle c={overline {EG}}={overline {EF}}} 和 α = ∠ D {displaystyle alpha =angle D} ,可解出 sin ⁡ γ {displaystyle sin {gamma }} ,但 sin ⁡ {displaystyle sin {}} 在 0°到 180°上先升后降导致 arcsin ⁡ {displaystyle arcsin {}} 有两解,即 γ {displaystyle gamma } 可能是钝角或锐角(或退化为只有一解是直角的特殊情况,此处略去),分别对应图中的 ∠ D G E {displaystyle angle DGE} 和 ∠ D F E {displaystyle angle DFE} 。然而若已知该三角形是直角或钝角三角形时,可以视情况排除掉其中的一个解、进而唯一确定 γ {displaystyle gamma } ,此时做减法得出 β {displaystyle beta } 后即可用余弦定理解得最后一边 B {displaystyle B} 。

相关

  • CXCL111RJT· inflammatory response · immune response · signal transductionCXCL11(英语:Chemokine (C-X-C motif) ligand 11)是一小分子的细胞因子属于CXC趋化因子家族,又被称
  • 男人男性,是指雄性的人类,与雌性人类即女性相对。男性这个名词是用来表示生物学上的性别划分,正式只适用于称呼人类,但有时侯也会用作称呼其他生物,同时亦可指文化上的性别角色。和其
  • 国家认同国族认同(又称为国家认同、民族认同,又可称为“国家身份”、“民族身份”、“国族身份”)是人对于国家或民族的归属感或认同感。这是种将国族视为一凝聚整体的观念,通常以一个国
  • 猪科猪科(学名:Suidae)属于哺乳纲偶蹄目,共有约20种现生物种与许多化石物种,包括家猪以及疣猪和鹿豚等多种野猪。所有物种均原产于亚洲、欧洲、非洲等旧大陆地区。已知最早的猪科化石
  • 史高维尔指标斯科维尔指标(英语:Scoville Scale)是1912年由美国化学家威尔伯·斯科维尔(Wilbur Scoville)所制订的度量辣椒素(Capsaicin)含量的一项指标。他以自己的姓“斯科维尔”(Scoville)作为
  • 翅膀翅膀亦称翼,为鸟与昆虫等动物用来飞行的器官。在现代,许多机械物件也会使用翅膀飞翔,例如航天飞机及飞机等。鸟的翅膀是其飞翔的主要结构,翅膀外面覆盖硬羽,其特性适于飞行。翅膀
  • 丁 颖丁颖(1888年11月25日-1964年10月14日),字君颖,号竹铭,广东高州人,中国农业科学家。1910年考入广东省高等师范学校博物科,于1912年公费留学到日本学农,三次往返,在日本学农长达9年。192
  • 出岛出岛是一个曾在日本江户时代肥前国(现在的长崎县)长崎港内的扇形人工岛、外国人居留地。在1641年到1859年期间,是荷兰商馆所在地。在锁国政策实行期间,出岛是日本对西方开放的唯
  • 代议制民主代议民主制(英语:representative democracy),又称间接民主制(英语:indirect democracy),与直接民主制相反,是由公民以选举形式选出立法机关的成员(议员),并代表其在议会中行使权力(称为代
  • 1,25-二羟胆钙化醇骨化三醇(英语:Calcitriol,又称为1,25-二羟胆钙化醇或1,25-二羟维生素D3)是维生素D的活性形式,也是体内的一种激素,在调节血钙与血磷浓度方面有着重要作用。7-脱氢胆固醇在皮肤内