全等三角形

✍ dations ◷ 2025-04-03 10:48:19 #全等三角形
全等三角形指两个全等的三角形,它们的三条边及三个角都应对等。全等三角形是几何中全等之一。根据全等转换,两个全等三角形可以平移、旋转、把轴对称,或重叠等。全等的数学符号为: ≅ {displaystyle cong }当使用该符号时,需保证符号两边的角、边一一对应。当两个三角形的对应边及角,完全相等,便是全等三角形。全等三角形有以下性质:若三角形ABC与三角形DEF是全等时(如右图),关系公式为:下列三对边长为“对应边”:下列三对角为“对应角”:同时,所有对应边长及角度均相等:因为多边形可由多个三角形组成,所以利用此方法,亦可验证其它全等的多边形。下列五种方法均可验证全等三角形:下列两种方法不能验证为全等三角形:以上的各方法也可通过三角函数的相关定理证明。这相当于解三角形,即三条边三个角一共六个量、固定其中三个而判断剩下三个量是否有唯一解。如右图△ A B C ≅ △ C D A {displaystyle triangle ABCcong triangle CDA,!} 此时三边已知,三个角可分别由余弦定理计算,由于 cos ⁡ {displaystyle cos {}} 在 0°到 180°之间是单调的所以 arccos ⁡ {displaystyle arccos {}} 可保证解出唯一值。如右图△ A B C ≅ △ A D C {displaystyle triangle ABCcong triangle ADC,!} 此时两边夹一角已知,首先用余弦定理计算第三边,接下来与 SSS 的情况相同。如右图△ A B C ≅ △ A E D {displaystyle triangle ABCcong triangle AED,!} 此时两角夹一边已知,通过三角形内角和得到第三角后用正弦定理计算剩下两边。如右图△ A B E ≅ △ D C E {displaystyle triangle ABEcong triangle DCE,!} 仍然是做减法得出第三角,接下来与 ASA 相同。为直角三角形中专用的三角型全等性质 ,即为直角三角形中的SSA ,也称为斜股性质 ,如右图△ A B C ≅ △ D F E {displaystyle triangle ABCcong triangle DFE,!} 勾股定理或是直接连两边的顶端解出剩下一边,即变成 SSS或SAS。AAA(角、角、角),指两个三角形的任何三个角都对应地相同。但这不能判定全等三角形,但AAA能判定相似三角形。在几何学上,当两条线叠在一起时,便会形一个点和一个角。而且,若该线无限地廷长,或无限地放大,该角度都不会改变。同理,在左图中,该两个三角形是相似三角形,这两个三角形的关系是放大缩小,因此角度不会改变。这样,便能得知若边无限地根据比例加长,角度都保持不变。因此,AAA并不能判定全等三角形。从正弦定理的角度看, a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 R {displaystyle {frac {a}{sin {alpha }}}={frac {b}{sin {beta }}}={frac {c}{sin {gamma }}}=2R} 这个比例的比值可以任意缩放,因此无法唯一确定三边长度。SSA(边、边、角),也称为ASS ,指两个三角形的任一角及另外两个没有夹着该角的边相等。但这不能判定全等三角形。在右图中,分别有三角形ABC及三角形DEF,并提供了以下资讯:那即是SSA。假如在右图绘画一个圆形,中心点为点E,半径为 E F ¯ {displaystyle {overline {EF}}} 。透过这个圆形便会发现, ∠ E D F {displaystyle angle EDF} 和 D E ¯ {displaystyle {overline {DE}}} 没有改变下,会出现另一个与 E F ¯ {displaystyle {overline {EF}}} 一样长度的直线(即图中的 E G ¯ {displaystyle {overline {EG}}} )。这样便能证明SSA并不能验证全等三角形,(除非已知 B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} 。当是直角三角形时应称为RHS)。虽然如此,当 ∠ B A C {displaystyle angle BAC} ≥ 90°时, ∠ B A C > ∠ A C B {displaystyle angle BAC>angle ACB} 。又 ∠ B A C > ∠ A C B {displaystyle angle BAC>angle ACB} ⇔ B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} , B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} ,故可验证全等三角形。再次使用正弦定理, a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 R {displaystyle {frac {a}{sin {alpha }}}={frac {b}{sin {beta }}}={frac {c}{sin {gamma }}}=2R} 其中已知 a = D E ¯ {displaystyle a={overline {DE}}} 、 c = E G ¯ = E F ¯ {displaystyle c={overline {EG}}={overline {EF}}} 和 α = ∠ D {displaystyle alpha =angle D} ,可解出 sin ⁡ γ {displaystyle sin {gamma }} ,但 sin ⁡ {displaystyle sin {}} 在 0°到 180°上先升后降导致 arcsin ⁡ {displaystyle arcsin {}} 有两解,即 γ {displaystyle gamma } 可能是钝角或锐角(或退化为只有一解是直角的特殊情况,此处略去),分别对应图中的 ∠ D G E {displaystyle angle DGE} 和 ∠ D F E {displaystyle angle DFE} 。然而若已知该三角形是直角或钝角三角形时,可以视情况排除掉其中的一个解、进而唯一确定 γ {displaystyle gamma } ,此时做减法得出 β {displaystyle beta } 后即可用余弦定理解得最后一边 B {displaystyle B} 。

相关

  • 群体集体又称群体(英语:collective),当多个团体中有一个共同的问题或动机,为了达到同一目标而组合成集体来共同努力实现共同目标。集体可以提出或行使政治或社会权利。有些集体是建立
  • 味觉过敏味觉过敏(英语:Hypergeusia)是一种被表现为味觉异常地增强的味觉失调(英语:Dysgeusia)。它可以与背颅窝(英语:Posterior cranial fossa)损伤和爱迪生氏症联系。病人因为体内离子大量
  • 恐高症惧高症,又称恐高症和畏高症,是恐惧症的一种,指对身处一定程度以上的高度感到恐惧,症状为在高处时陷入恐慌,呼吸加速手足无措无法对周遭事物做正常反应而呆在高处下不来,除了视觉造
  • 包含式包含式(clusivity)在语言学上是指介于包容性与排除'的第一人称代词及动词之间的语法区分,亦称为包容性的"我们"及排除性的"我们"。包容性的"我们"具体包括"谈话的对象"(addresse
  • 几部,就漢字索引來說,是為部首之一,康熙字典214個部首中的第十六個(兩劃的則為第十個)。歸於二劃部首,通常是從外方為部,且無其他部首可用者將部首歸為几部。又读ㄐㄧˇ。 1.古人坐
  • 司法部美国司法部(英语:United States Department of Justice),是美国政府的一个部,其部门长官享有阁员地位。负责的任务是保障法律的施行,维护美国政府的法律利益和保障法律对美国所有
  • Csub2/subOsub2/sub乙烯二酮也称为“二氧化二碳”,是一种早于1913年被提出,但直到2015年才被证实存在的碳氧化物。乙烯二酮的分子式为C2O2, 结构式为O=C=C=O。C2O2可以看作是CO的二聚体或乙醛酸的
  • 西吉贝尔特三世西吉贝尔特三世(Sigebert III)是墨洛温王朝的法兰克国王,出生于630年,于656年2月1日逝世。西吉贝尔特三世的父亲是达戈贝尔特一世,于634年-656年在位。西吉贝尔特三世被称为第一
  • 张系国张系国(1944年7月17日-),江西南昌人,生于重庆,计算机和电脑专家、著名台湾作家、中文科幻小说作家,创办《幻象》科幻杂志,为台湾科幻重要推手。为新竹中学校友,1965台湾大学电机系毕
  • 静电验电器静电验电器(versorium)是最早出现的一种简单的验电器,能够侦测到静电荷的存在。静电验电器是由英国女王伊丽莎白一世的医生威廉·吉尔伯特于1600年所发明。