全等三角形

✍ dations ◷ 2025-11-23 12:07:29 #全等三角形
全等三角形指两个全等的三角形,它们的三条边及三个角都应对等。全等三角形是几何中全等之一。根据全等转换,两个全等三角形可以平移、旋转、把轴对称,或重叠等。全等的数学符号为: ≅ {displaystyle cong }当使用该符号时,需保证符号两边的角、边一一对应。当两个三角形的对应边及角,完全相等,便是全等三角形。全等三角形有以下性质:若三角形ABC与三角形DEF是全等时(如右图),关系公式为:下列三对边长为“对应边”:下列三对角为“对应角”:同时,所有对应边长及角度均相等:因为多边形可由多个三角形组成,所以利用此方法,亦可验证其它全等的多边形。下列五种方法均可验证全等三角形:下列两种方法不能验证为全等三角形:以上的各方法也可通过三角函数的相关定理证明。这相当于解三角形,即三条边三个角一共六个量、固定其中三个而判断剩下三个量是否有唯一解。如右图△ A B C ≅ △ C D A {displaystyle triangle ABCcong triangle CDA,!} 此时三边已知,三个角可分别由余弦定理计算,由于 cos ⁡ {displaystyle cos {}} 在 0°到 180°之间是单调的所以 arccos ⁡ {displaystyle arccos {}} 可保证解出唯一值。如右图△ A B C ≅ △ A D C {displaystyle triangle ABCcong triangle ADC,!} 此时两边夹一角已知,首先用余弦定理计算第三边,接下来与 SSS 的情况相同。如右图△ A B C ≅ △ A E D {displaystyle triangle ABCcong triangle AED,!} 此时两角夹一边已知,通过三角形内角和得到第三角后用正弦定理计算剩下两边。如右图△ A B E ≅ △ D C E {displaystyle triangle ABEcong triangle DCE,!} 仍然是做减法得出第三角,接下来与 ASA 相同。为直角三角形中专用的三角型全等性质 ,即为直角三角形中的SSA ,也称为斜股性质 ,如右图△ A B C ≅ △ D F E {displaystyle triangle ABCcong triangle DFE,!} 勾股定理或是直接连两边的顶端解出剩下一边,即变成 SSS或SAS。AAA(角、角、角),指两个三角形的任何三个角都对应地相同。但这不能判定全等三角形,但AAA能判定相似三角形。在几何学上,当两条线叠在一起时,便会形一个点和一个角。而且,若该线无限地廷长,或无限地放大,该角度都不会改变。同理,在左图中,该两个三角形是相似三角形,这两个三角形的关系是放大缩小,因此角度不会改变。这样,便能得知若边无限地根据比例加长,角度都保持不变。因此,AAA并不能判定全等三角形。从正弦定理的角度看, a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 R {displaystyle {frac {a}{sin {alpha }}}={frac {b}{sin {beta }}}={frac {c}{sin {gamma }}}=2R} 这个比例的比值可以任意缩放,因此无法唯一确定三边长度。SSA(边、边、角),也称为ASS ,指两个三角形的任一角及另外两个没有夹着该角的边相等。但这不能判定全等三角形。在右图中,分别有三角形ABC及三角形DEF,并提供了以下资讯:那即是SSA。假如在右图绘画一个圆形,中心点为点E,半径为 E F ¯ {displaystyle {overline {EF}}} 。透过这个圆形便会发现, ∠ E D F {displaystyle angle EDF} 和 D E ¯ {displaystyle {overline {DE}}} 没有改变下,会出现另一个与 E F ¯ {displaystyle {overline {EF}}} 一样长度的直线(即图中的 E G ¯ {displaystyle {overline {EG}}} )。这样便能证明SSA并不能验证全等三角形,(除非已知 B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} 。当是直角三角形时应称为RHS)。虽然如此,当 ∠ B A C {displaystyle angle BAC} ≥ 90°时, ∠ B A C > ∠ A C B {displaystyle angle BAC>angle ACB} 。又 ∠ B A C > ∠ A C B {displaystyle angle BAC>angle ACB} ⇔ B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} , B C ¯ > A B ¯ {displaystyle {overline {BC}}>{overline {AB}}} ,故可验证全等三角形。再次使用正弦定理, a sin ⁡ α = b sin ⁡ β = c sin ⁡ γ = 2 R {displaystyle {frac {a}{sin {alpha }}}={frac {b}{sin {beta }}}={frac {c}{sin {gamma }}}=2R} 其中已知 a = D E ¯ {displaystyle a={overline {DE}}} 、 c = E G ¯ = E F ¯ {displaystyle c={overline {EG}}={overline {EF}}} 和 α = ∠ D {displaystyle alpha =angle D} ,可解出 sin ⁡ γ {displaystyle sin {gamma }} ,但 sin ⁡ {displaystyle sin {}} 在 0°到 180°上先升后降导致 arcsin ⁡ {displaystyle arcsin {}} 有两解,即 γ {displaystyle gamma } 可能是钝角或锐角(或退化为只有一解是直角的特殊情况,此处略去),分别对应图中的 ∠ D G E {displaystyle angle DGE} 和 ∠ D F E {displaystyle angle DFE} 。然而若已知该三角形是直角或钝角三角形时,可以视情况排除掉其中的一个解、进而唯一确定 γ {displaystyle gamma } ,此时做减法得出 β {displaystyle beta } 后即可用余弦定理解得最后一边 B {displaystyle B} 。

相关

  • 埃乌杰尼奥·蒙塔莱埃乌杰尼奥·蒙塔莱(意大利语:Eugenio Montale,1896年10月12日-1981年9月12日),意大利诗人、散文家、编辑、翻译家,1975年诺贝尔文学奖得主。1901年:普吕多姆 | 1902年:蒙森 | 1903年
  • 波河平原波河河谷或称波河平原、巴丹平原(意大利语:Pianura Padana 或 Val Padana)是意大利的主要平原和地理特征之一,也是欧洲的主要工农业产区,位于波河流域。它从阿尔卑斯山一直延伸
  • 乔治·波特乔治·波特,陆登汉姆的波特男爵,OM,FRS(英语:George Porter, Baron Porter of Luddenham,1920年12月6日-2002年8月31日),英国化学家,1967年获诺贝尔化学奖。1901年:范托夫 | 1902年:费歇
  • snoRNA小核仁RNA(Small nucleolar RNAs;snoRNAs)是一类小型RNA分子,可引导核糖体RNA(rRNA)或其他RNA的化学修饰(如甲基化)作用。根据MeSH的分类,此分子属于小核RNA(snRNA)的一种。可分为C/D b
  • 费维扬费维扬(1939年7月3日-),中国化学工程学家。生于上海。1963年毕业于清华大学工程化学系。清华大学化学工程系教授,化学工程联合国家重点实验室副主任。2003年当选为中国科学院院士
  • span style=color:black;梅克伦堡-前波美拉尼亚/span梅克伦堡-前波美拉尼亚(德语:Mecklenburg-Vorpommern)是德国东北部的一个州。它是由原梅克伦堡约三分之二的区域以及普鲁士时期的波美拉尼亚西部,还有普利希尼茨的一小部分地区
  • 珊瑚礁岛珊瑚岛是海中的珊瑚虫遗骸堆筑的岛屿。一般分布在热带海洋中,一般与大陆的构造、岩性、地质演化历史没有关系,因此珊瑚岛和火山岛一起被统称为大洋岛。世界著名的珊瑚群岛有:
  • 台中港台中港是位于台湾台中市的国际商港,十大建设的重要项目之一,距离北部基隆港和南部高雄港各约110海里。港区总面积为11,285公顷,水域面积8,382公顷,陆地面积2,903公顷, 台中港港
  • 长喙壳菌目Kathistaceae 长喙壳菌科 Ophiostomataceae长喙壳菌目(学名:Ophiostomatales)是粪壳菌纲的一个目,此分类群的多数种类真菌能借由小蠹虫(英语:bark beetle)传播,有些种类会造成边材的
  • 非常罕见在医学中,副作用(英语:side effect)是指药品往往有多种作用,作用于不同身体部位受体,治疗时利用其一种或一部分受体作用,其他作用或是受体产生作用即变成为副作用。虽然副作用一词