布劳威尔不动点定理

✍ dations ◷ 2025-11-17 11:43:20 #不动点,连续映射,数学定理,拓扑学理论

在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间并构成了一般不动点定理的基石。布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(荷兰语:L. E. J. Brouwer)。

布劳威尔不动点定理说明:对于一个拓扑空间中满足一定条件的连续函数 f {\displaystyle f} = 3 的情况(发表于《纯綷及应用数学期刊》之内)。后来在1909年,鲁伊兹·布劳威尔(L. E. J. Brouwer)再次证明。在1910年,雅克·阿达马提供一般情况的证明,而布劳威尔在1912年提出另一个不同的证明。这些早期的证明皆属于非构造性的间接证明,与数学直觉主义理想矛盾。现在已知如何构造(接近)由布劳威尔不动点定理所保证的不动点,见例子 (Karamadian 1977) 和 (Istrăţescu 1981)。

布劳威尔不动点定理有若干种不同的叙述方式,与使用时的上下文有关。

最简单的形式如下:

推广到任意有限维数的情况,就是:

一个稍微更一般化的结论是:

而更加著名的是一个还要更一般化的定理:

这个定理可以通过很实际的例子来理解。比如:取两张一样大小的白纸,在上面画好垂直的坐标系以及纵横的方格。将一张纸平铺在桌面,而另外一张随意揉成一个形状(但不能撕裂),放在第一张白纸之上,不超出第一张的边界。那么第二张纸上一定有一点正好就在第一张纸的对应点的正上方。一个更简单的说法是:将一张白纸平铺在桌面上,再将它揉成一团(不撕裂),放在原来白纸所在的地方,那么只要它不超出原来白纸平铺时的边界,那么白纸上一定有一点在水平方向上没有移动过。

这个断言的根据就是布劳威尔不动点定理在二维欧几里得空间(欧几里得平面)的情况,因为把纸揉皱是一个连续的变换过程。

另一个例子是大商场等地方可以看到的平面地图,上面标有“您在此处”的红点。如果标注足够精确,那么这个点就是把实际地形射到地图的连续函数的不动点。

三维空间中的情况:如果我们用一个密封的锅子煮水,那么总有一个水分子在煮开前的某一刻和煮开后的某一刻处于同样的位置。

地球绕着它的自转轴自转。自转轴在自转过程中是不变的,也就是自转运动的不动点。

相关

  • 后天免疫系统后天性免疫(英语:adaptive immunity)也称为获得性免疫、适应性免疫、特异性免疫、专一性防御,是一种经由与特定病原体接触后,产生能识别并针对特定病原体启动的免疫反应。和后天
  • 健康教育健康教育,是健康教育学的一个核心概念,是旨在帮助对象人群或个体改善健康相关行为的系统的社会活动;是在调查研究的基础上采用健康信息传播等干预措施促使人群或个体自觉采纳有
  • 联邦工业与贸易部俄罗斯联邦工业和贸易部(俄语:Министерство промышленности и торговли Российской Федерации)是俄罗斯联邦政府的组
  • 军工业国防工业,亦称作军事工业,是由涉及军事装备及设备硏究、开发生产与服务的政府与商业产业组成,其中包括:亦可包括以下:国防工业大致可分为三个方面论述,其中包括武器产业链、武器自
  • 普林斯顿 (新泽西州)普林斯顿(英语:Princeton)是美国东北部城市,位于新泽西州默瑟县。普林斯顿大学、普林斯顿高等研究院和普林斯顿神学院位于此市。普林斯顿地处纽约和费城之间,新泽西州西南的特拉
  • 重排反应重排反应(Rearrangement reaction)是分子的碳骨架发生重排生成结构异构体的化学反应,是有机反应中的一大类。重排反应通常涉及取代基由一个原子转移到同一个分子中的另一个原子
  • JuKJuK JuK是一个KDE下的自由音频播放器,也是KDE 3.2以后默认的音频播放器 ,kdemultimedia 软件包的一部分。JuK支持MP3、Ogg Vorbis和FLAC文件。JuK开发是由Scott Wheeler在2000
  • 王纶 (成化甲辰进士)王纶(?年-1510年),字汝言,号节斋,浙江慈谿县(今浙江省慈溪市)人。明朝政治人物,成化甲辰进士,正德间官至湖广巡抚。成化二十年(1484年)甲辰科进士出身。授工部都水司主事,因母丧去职。守丧
  • 刘立富刘立富(1926年-1962年),辽宁旅顺人,中华人民共和国政治人物。担任旅大市一等先进工作者。旅顺船坞工厂工人。1954年,当选第一届全国人民代表大会代表。
  • 1389运动1389运动(塞尔维亚语:Покрет 1389)或称1389塞尔维亚人民运动(Српски народни покрет 1389),为塞尔维亚极右派组织(但自我认定为反法西斯青年运动)。该组织