正五边形

✍ dations ◷ 2025-11-08 07:09:24 #正五边形
在几何学中,五边形是指有五条边和五个顶点的多边形,其内角和为540度。五边形可以分为凸五边形和非凸五边形,其中非凸五边形包含了凹五边形和另一种边自我相交的五角星。最简单的五角星可借由将正五边形的对角线连起来构成。正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用 { 5 } {displaystyle left{5right}} 来表示。正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。其中 R {displaystyle R} 为外接圆半径。边长为 t {displaystyle t} 的正凸五边形面积可以将之分割成5个等腰三角形计算:正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年 (2015-Missing required parameter 1=month!),2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。。正多边形的面积公式为:其中, P {displaystyle P} 是周长、 r {displaystyle r} 是边心距。正五边形的 P {displaystyle P} 和 r {displaystyle r} 可由三角函数计算:其中, t {displaystyle t} 是正五边形的边长。正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。其中, r {displaystyle r} 为内切圆半径与边心距相同、t为正五边形边长。里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被进一步讨论。。右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。 C {displaystyle C} 为单位圆圆心, M {displaystyle M} 是圆 C {displaystyle C} 半径的中点。 D {displaystyle D} 是位于垂直于 M C {displaystyle MC} 的另外一条半径的圆周上。作 ∠ C M D {displaystyle angle CMD} 的角平分线,令 Q {displaystyle Q} 为 ∠ C M D {displaystyle angle CMD} 的角平分线与 C D {displaystyle CD} 的交点。作过 Q {displaystyle Q} 平行于 M C {displaystyle MC} 的直线,令之与圆 C {displaystyle C} 相交的交点为 P {displaystyle P} ,则 D P {displaystyle DP} 为正五边形的边长。这条边的长度可以利用圆下方的两个直角三角形 D C M {displaystyle DCM} 和 Q C M {displaystyle QCM} 。利用勾股定理,较大的三角形斜边为 5 2 {displaystyle {frac {sqrt {5}}{2}}scriptstyle } 。小三角形其中一股h可由半角公式求得:其中,角 ϕ {displaystyle phi } 可由大三角形求得,其值为:由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长 a {displaystyle a} 可借由再带一次勾股定理得:欲求出五边形边长 s {displaystyle s} 可透过左侧的三角形,由勾股定理得:五边形边长 s {displaystyle s} 为:得到了正确的结果因此此种构造正五边形的方法是有效的。约公元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。等边五边形是指五条边等长的五边形。等边五边形不一定是正五边形。由于其内角可以取自一个范围内的集合,而形成一个等边五边形的群,相比之下,正五边形由于其内角也固定了,因此是唯一的。有两个直角的等边五边形由于外形与有屋顶的房屋形状非常相似,因此通常用作房子的符号。五边形镶嵌是指用全等的五边形没有空隙地填满整个平面的镶嵌图形。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。扭歪五边形,又称不共面五边形,是指顶点并非完全共面的五边形。一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪五边形,例如四维正五胞体。类五边形形是五边形在其他维度的类比,只存在于四维或以下的空间。这些形状都具有Hn的考克斯特群,其中正五边形为H2,阶数为10。有一些多面体由五边形构成,最常见的就是正十二面体,是一个由正五边形组成的正多面体。

相关

  • 延髓延髓(英语:medulla oblongata),为中央神经系统的一部分,是脑干最下方的结构,位于小脑正前方。长约一吋半,宽约半吋。上接脑桥(pons) ,下接脊髓(spinal cord)。它具有第九至第十二颅神
  • 埃斯库罗斯埃斯库罗斯(Αισχύλος,前525年-前456年),古希腊悲剧诗人,与索福克勒斯和欧里庇得斯并列为古希腊最伟大的悲剧作家,有“悲剧之父”的美誉。埃斯库罗斯生于希腊阿提卡的埃琉西
  • 拉迪诺语拉迪诺语(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taamey
  • 形式系统在逻辑与数学中,一个形式系统(英语:Formal system)是由两个部分组成的,一个形式语言加上一个推理规则或转换规则的集合。大卫·希尔伯特在1921年推动以形式系统来描述数学知识 。
  • 舐阴舐阴(英语:Cunnilingus),又称“舔阴”,是口交的其中一种形式,当中从事者的口部会跟一名女性的生殖器(阴蒂、外阴的其他部分或阴道)接触,并以此进行刺激。阴蒂是人类女性生殖器中最为
  • 库尔特·勒温库尔特·勒温(Kurt Zadek Lewin,1890年9月9日-1947年2月12日)是一位德裔美国心理学家,他是现代社会心理学、组织心理学和应用心理学的创始人,常被称为“社会心理学之父”,最早研究
  • 选择性雌激素受体调节物选择性雌激素受体调节物(Selective estrogen receptor modulators,简称SERMs) 为作用于动情素受体(英语:Estrogen receptor)的药物。此类药物可以分为动情素受体激动剂以及受体拮
  • HAt砹化氢,又称氢砹酸(化学式:HAt),是一种卤氢酸,由氢原子与砹原子组成的共价化合物。这种化合物溶于水生成氢砹酸,性质和其他四种卤化氢相似——实际上具备氢卤酸中最强的酸性。但它
  • 欧洲各共同体欧洲各共同体(英语:European Communities, EC; 法语:Communautés européennes, CE; 德语:Europäische Gemeinschaften, EG/EGen)是一个已不再被欧盟官方使用的制度名称(使用期
  • 多板纲见内文多板纲(学名:Polyplacophora),又名石鳖纲(Loricata),是软体动物门的一个纲,约有900多个物种。本纲物种生活于海中,当中大部分的物种生活在潮间带和潮下带浅水区的岩石上,但也有