正五边形

✍ dations ◷ 2025-08-23 19:33:58 #正五边形
在几何学中,五边形是指有五条边和五个顶点的多边形,其内角和为540度。五边形可以分为凸五边形和非凸五边形,其中非凸五边形包含了凹五边形和另一种边自我相交的五角星。最简单的五角星可借由将正五边形的对角线连起来构成。正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用 { 5 } {displaystyle left{5right}} 来表示。正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。其中 R {displaystyle R} 为外接圆半径。边长为 t {displaystyle t} 的正凸五边形面积可以将之分割成5个等腰三角形计算:正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年 (2015-Missing required parameter 1=month!),2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。。正多边形的面积公式为:其中, P {displaystyle P} 是周长、 r {displaystyle r} 是边心距。正五边形的 P {displaystyle P} 和 r {displaystyle r} 可由三角函数计算:其中, t {displaystyle t} 是正五边形的边长。正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。其中, r {displaystyle r} 为内切圆半径与边心距相同、t为正五边形边长。里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被进一步讨论。。右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。 C {displaystyle C} 为单位圆圆心, M {displaystyle M} 是圆 C {displaystyle C} 半径的中点。 D {displaystyle D} 是位于垂直于 M C {displaystyle MC} 的另外一条半径的圆周上。作 ∠ C M D {displaystyle angle CMD} 的角平分线,令 Q {displaystyle Q} 为 ∠ C M D {displaystyle angle CMD} 的角平分线与 C D {displaystyle CD} 的交点。作过 Q {displaystyle Q} 平行于 M C {displaystyle MC} 的直线,令之与圆 C {displaystyle C} 相交的交点为 P {displaystyle P} ,则 D P {displaystyle DP} 为正五边形的边长。这条边的长度可以利用圆下方的两个直角三角形 D C M {displaystyle DCM} 和 Q C M {displaystyle QCM} 。利用勾股定理,较大的三角形斜边为 5 2 {displaystyle {frac {sqrt {5}}{2}}scriptstyle } 。小三角形其中一股h可由半角公式求得:其中,角 ϕ {displaystyle phi } 可由大三角形求得,其值为:由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长 a {displaystyle a} 可借由再带一次勾股定理得:欲求出五边形边长 s {displaystyle s} 可透过左侧的三角形,由勾股定理得:五边形边长 s {displaystyle s} 为:得到了正确的结果因此此种构造正五边形的方法是有效的。约公元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。等边五边形是指五条边等长的五边形。等边五边形不一定是正五边形。由于其内角可以取自一个范围内的集合,而形成一个等边五边形的群,相比之下,正五边形由于其内角也固定了,因此是唯一的。有两个直角的等边五边形由于外形与有屋顶的房屋形状非常相似,因此通常用作房子的符号。五边形镶嵌是指用全等的五边形没有空隙地填满整个平面的镶嵌图形。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。扭歪五边形,又称不共面五边形,是指顶点并非完全共面的五边形。一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪五边形,例如四维正五胞体。类五边形形是五边形在其他维度的类比,只存在于四维或以下的空间。这些形状都具有Hn的考克斯特群,其中正五边形为H2,阶数为10。有一些多面体由五边形构成,最常见的就是正十二面体,是一个由正五边形组成的正多面体。

相关

  • 亚历山大·冯·洪堡弗里德里希·威廉·海因里希·亚历山大·冯·洪堡(德语:Friedrich Wilhelm Heinrich Alexander von Humboldt,1769年9月14日-1859年5月6日),德国自然科学家、自然地理学家,近代气候
  • 突触传递突触(法语、英语、德语: Synapse)是神经元之间,或神经元与肌细胞、腺体之间通信的特异性接头。神经元与肌肉细胞之间的突触亦称为神经肌肉接头(neuromuscular junction)。中枢神
  • 半自主细胞器半自主胞器(英语 : semiautonomous organelles) 是细胞中可以自行合成蛋白质的胞器,目前已知的半自主胞器有线粒体及叶绿体。半自主胞器拥有自身的遗传物质DNA及核糖体,但因
  • 艸部,为汉字索引中的部首之一,康熙字典214个部首中的第一百四十个(六划的则为第二十三个)。在正体中文中,艸部归于六划部首,而在简体中文中,将汉字部首规范的《汉字部首表》中,将“
  • span class=chemf style=white-space:nowrap;Csub10/sub正癸烷是化学式为CH3(CH2)8CH3的烷烃,总共有136种异构体,若不计立体异构则为75个,全都是可燃液体。癸烷是汽油的组分之一。与其他烷烃类似,癸烷是非极性分子,不易溶于水之类的极
  • 马萨诸塞马萨诸塞州(英语:Commonwealth of Massachusetts),简称麻省、麻州,正式名称为马萨诸塞联邦,是位于美国东北部的州,为美国独立时最初的十三州之一,也是新英格兰六州里人口最密集的一
  • 格拉斯考克县坐标:33°14′32″N 82°37′36″W / 33.2422994°N 82.6267345°W / 33.2422994; -82.6267345格拉斯卡克县(英语:Glascock County, Georgia)是美国乔治亚州东部的一个县。面积3
  • 脱氨脱氨作用(英语:deamination,亦可称为脱氨基)是指移除分子上的一个氨基。人类的肝脏经由脱氨作用将氨基酸分解,当氨基酸的氨基被去除之后,会转变成氨。由碳及氢所组成的残余部分,则
  • 印度快报《印度快报》(英语:The Indian Express) ,是印度一份英语日报,始创于1933年,在印度九个主要城市(那格浦尔、德里、孟买、加尔各答、浦那、卢迪亚纳、昌迪加尔、勒克瑙和艾哈迈达巴
  • 拳术武术,又称搏击、格斗,是指以肢体或冷兵器、武器互相竞技的技术。前者之内容为锻炼身体各部位以攻击对手,种类分为踢打拿摔四大类;后者则以刀、枪、棍、剑、鞭、镖、锤、矛、钯、