正五边形

✍ dations ◷ 2025-02-23 14:24:11 #正五边形
在几何学中,五边形是指有五条边和五个顶点的多边形,其内角和为540度。五边形可以分为凸五边形和非凸五边形,其中非凸五边形包含了凹五边形和另一种边自我相交的五角星。最简单的五角星可借由将正五边形的对角线连起来构成。正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用 { 5 } {displaystyle left{5right}} 来表示。正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。其中 R {displaystyle R} 为外接圆半径。边长为 t {displaystyle t} 的正凸五边形面积可以将之分割成5个等腰三角形计算:正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年 (2015-Missing required parameter 1=month!),2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。。正多边形的面积公式为:其中, P {displaystyle P} 是周长、 r {displaystyle r} 是边心距。正五边形的 P {displaystyle P} 和 r {displaystyle r} 可由三角函数计算:其中, t {displaystyle t} 是正五边形的边长。正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。其中, r {displaystyle r} 为内切圆半径与边心距相同、t为正五边形边长。里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被进一步讨论。。右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。 C {displaystyle C} 为单位圆圆心, M {displaystyle M} 是圆 C {displaystyle C} 半径的中点。 D {displaystyle D} 是位于垂直于 M C {displaystyle MC} 的另外一条半径的圆周上。作 ∠ C M D {displaystyle angle CMD} 的角平分线,令 Q {displaystyle Q} 为 ∠ C M D {displaystyle angle CMD} 的角平分线与 C D {displaystyle CD} 的交点。作过 Q {displaystyle Q} 平行于 M C {displaystyle MC} 的直线,令之与圆 C {displaystyle C} 相交的交点为 P {displaystyle P} ,则 D P {displaystyle DP} 为正五边形的边长。这条边的长度可以利用圆下方的两个直角三角形 D C M {displaystyle DCM} 和 Q C M {displaystyle QCM} 。利用勾股定理,较大的三角形斜边为 5 2 {displaystyle {frac {sqrt {5}}{2}}scriptstyle } 。小三角形其中一股h可由半角公式求得:其中,角 ϕ {displaystyle phi } 可由大三角形求得,其值为:由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长 a {displaystyle a} 可借由再带一次勾股定理得:欲求出五边形边长 s {displaystyle s} 可透过左侧的三角形,由勾股定理得:五边形边长 s {displaystyle s} 为:得到了正确的结果因此此种构造正五边形的方法是有效的。约公元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。等边五边形是指五条边等长的五边形。等边五边形不一定是正五边形。由于其内角可以取自一个范围内的集合,而形成一个等边五边形的群,相比之下,正五边形由于其内角也固定了,因此是唯一的。有两个直角的等边五边形由于外形与有屋顶的房屋形状非常相似,因此通常用作房子的符号。五边形镶嵌是指用全等的五边形没有空隙地填满整个平面的镶嵌图形。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。扭歪五边形,又称不共面五边形,是指顶点并非完全共面的五边形。一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪五边形,例如四维正五胞体。类五边形形是五边形在其他维度的类比,只存在于四维或以下的空间。这些形状都具有Hn的考克斯特群,其中正五边形为H2,阶数为10。有一些多面体由五边形构成,最常见的就是正十二面体,是一个由正五边形组成的正多面体。

相关

  • 唇炎唇炎,也就是嘴唇发炎,主要症状为嘴唇干燥、脱皮、皲裂、结痂,有时还出现水泡、渗出液。引发唇炎的病因很多,其中以嘴唇受到口水或外物刺激,及嘴唇对外物过敏较为常见。如果患者平
  • 高钙血症高血钙(Hypercalcaemia)是指血液中的钙离子(Ca2+)过高的疾病。人体一般血钙浓度在2.1–2.6 mmol/L (8.8–10.7 mg/dL, 4.3–5.2 mEq/L),若浓度高于2.6 mmol/L,就是高血钙。轻度高
  • 荧光显微镜荧光显微镜是一种使用荧光或磷光物质的光学显微镜,或除此之外使用反射和吸收用于研究的有机或无机物质的特性。“荧光显微镜”是指使用荧光来产生一个图像的任何显微镜,无论是
  • 中世纪伊斯兰世界的科学中世纪伊斯兰世界的科学即时通常所谓的伊斯兰科学、阿拉伯科学,是指中世纪的伊斯兰黄金时代(约750年至1258年)时伊斯兰世界发展出来的科学。在这段时期内印度、伊朗,特别是希腊
  • 糖胺聚糖糖胺聚糖(英语:Glycosaminoglycan,简称为GAGs,旧称为黏多糖(英语:mucopolysaccharides))是蛋白聚糖大分子中聚糖部分的总称。由糖胺的二糖重复单位组成,二糖单位中通常有一个是含氨
  • 自动变形监测系统变形监测是指使用专门的仪器和利用一定的方法对变形体在外力作用下形状或体积的变化进行系统性的观测的一种测量工作。变形监测得到的观测值是作变行分析、预见性维护等的主
  • 乙烯乙烯是由两个碳原子和四个氢原子组成的化合物。两个碳原子之间用双键连接。乙烯为合成纤维、合成橡胶、合成塑料(聚乙烯及聚氯乙烯)、合成乙醇(酒精)的基本化工原料,也用于制造氯
  • 凯旋级核潜艇凯旋级核潜艇(法语:Classe Le Triomphant)是法国海军现役的弹道导弹核潜艇,共有4艘,分别于1997、1999、2004及2010年服役。四艘核潜艇取代原有的六艘可畏级核潜艇,成为法国核慑力
  • 科斯特罗马州科斯特罗马州(俄语:Костромская область,罗马化:Kostromskaya oblast)是俄罗斯联邦主体之一,属中央联邦管区。于1944年8月13日自雅罗斯拉夫尔州独立,目前有重新
  • 诺里什罗纳德·乔治·雷伊福特·诺里什(英语:Ronald George Wreyford Norrish,1897年11月9日-1978年6月7日),英国化学家,1967年获诺贝尔化学奖。1897年出生于英国剑桥。1978年逝世于英国