首页 >
正五边形
✍ dations ◷ 2025-09-13 04:53:21 #正五边形
在几何学中,五边形是指有五条边和五个顶点的多边形,其内角和为540度。五边形可以分为凸五边形和非凸五边形,其中非凸五边形包含了凹五边形和另一种边自我相交的五角星。最简单的五角星可借由将正五边形的对角线连起来构成。正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用
{
5
}
{displaystyle left{5right}}
来表示。正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。其中
R
{displaystyle R}
为外接圆半径。边长为
t
{displaystyle t}
的正凸五边形面积可以将之分割成5个等腰三角形计算:正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年 (2015-Missing required parameter 1=month!),2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。。正多边形的面积公式为:其中,
P
{displaystyle P}
是周长、
r
{displaystyle r}
是边心距。正五边形的
P
{displaystyle P}
和
r
{displaystyle r}
可由三角函数计算:其中,
t
{displaystyle t}
是正五边形的边长。正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。其中,
r
{displaystyle r}
为内切圆半径与边心距相同、t为正五边形边长。里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被进一步讨论。。右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。
C
{displaystyle C}
为单位圆圆心,
M
{displaystyle M}
是圆
C
{displaystyle C}
半径的中点。
D
{displaystyle D}
是位于垂直于
M
C
{displaystyle MC}
的另外一条半径的圆周上。作
∠
C
M
D
{displaystyle angle CMD}
的角平分线,令
Q
{displaystyle Q}
为
∠
C
M
D
{displaystyle angle CMD}
的角平分线与
C
D
{displaystyle CD}
的交点。作过
Q
{displaystyle Q}
平行于
M
C
{displaystyle MC}
的直线,令之与圆
C
{displaystyle C}
相交的交点为
P
{displaystyle P}
,则
D
P
{displaystyle DP}
为正五边形的边长。这条边的长度可以利用圆下方的两个直角三角形
D
C
M
{displaystyle DCM}
和
Q
C
M
{displaystyle QCM}
。利用勾股定理,较大的三角形斜边为
5
2
{displaystyle {frac {sqrt {5}}{2}}scriptstyle }
。小三角形其中一股h可由半角公式求得:其中,角
ϕ
{displaystyle phi }
可由大三角形求得,其值为:由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长
a
{displaystyle a}
可借由再带一次勾股定理得:欲求出五边形边长
s
{displaystyle s}
可透过左侧的三角形,由勾股定理得:五边形边长
s
{displaystyle s}
为:得到了正确的结果因此此种构造正五边形的方法是有效的。约公元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。等边五边形是指五条边等长的五边形。等边五边形不一定是正五边形。由于其内角可以取自一个范围内的集合,而形成一个等边五边形的群,相比之下,正五边形由于其内角也固定了,因此是唯一的。有两个直角的等边五边形由于外形与有屋顶的房屋形状非常相似,因此通常用作房子的符号。五边形镶嵌是指用全等的五边形没有空隙地填满整个平面的镶嵌图形。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。扭歪五边形,又称不共面五边形,是指顶点并非完全共面的五边形。一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪五边形,例如四维正五胞体。类五边形形是五边形在其他维度的类比,只存在于四维或以下的空间。这些形状都具有Hn的考克斯特群,其中正五边形为H2,阶数为10。有一些多面体由五边形构成,最常见的就是正十二面体,是一个由正五边形组成的正多面体。
相关
- 喉囊肿喉囊肿(laryngeal cysts)是指囊肿发生在喉部、或更频繁使用的声门上之位置,诸如“会厌谷囊肿(epiglottic vallecula cyst)”发生在会厌旁谷(英语:Vallecula)里的现象。通常喉囊肿
- 背痛背痛包括有肌肉、神经、骨骼、关节或与脊柱相关的其它方面的疼痛。背痛可以分为颈部疼痛、肩部疼痛、腰部疼痛和尾椎疼痛,又可分为急性或慢性、持续或间歇性、同一部位或多个
- 担子担子(basidium,复数basidia)是担子菌门真菌子实层上的产孢构造,为该门真菌的主要特征之一,一个担子上面通常会长有四个有性孢子,这些有性孢子称为担孢子 (basidiospore),不过有时候
- 软件软件(英语:software)是一系列按照特定顺序组织的电脑数据和指令,是电脑中的非有形部分。电脑中的有形部分称为硬件,由电脑的外壳及各零件及电路所组成。电脑软件需有硬件才能运作
- 神经调节神经调节 (Neuromodulation)是一种神经传导过程。在此过程中,一个特定神经元使用一个或多个神经传导物质来控制一系列神经元。被一小群神经元覆盖住的神经调解质会在神经系统
- 舔肛舔肛,又称舐肛,是口交的一种形式,指性行为中一方以口(唇、舌)接触另一方肛门以进行性刺激。此动作可由各种性取向的人群采行。在性服务场所,又称毒龙钻。舔肛的具体形式包括吻吸、
- cys半胱氨酸(Cysteine,可简写为Cys或C)是20种天然氨基酸之一,是一种含硫(与甲硫氨酸一样)的非必需氨基酸。动物体内可经由甲硫氨酸和丝氨酸合成。有缓解修复放射线对人体的损伤作用
- 国教国教或官方宗教、官方信仰,是指由国家确立的特定宗教。拥有国教的国家并非一定为神权国家,也不代表国教受到政府控制。国家或政府在当代社会中对公民施加国教影响的程度差别很
- 马赛大瘟疫马赛大瘟疫(英语:Great Plague of Marseille)是18世纪初腺鼠疫在欧洲最强烈的一次爆发。1720年在法国马赛爆发的腺鼠疫导致市内和周边地区约十万人丧生。但是在瘟疫过后马赛很
- 瓦良格人瓦良格人(瑞典语:Varjager;希腊语:Βάραγγοι或Βαριάγοι,Varangoi或Variagoi;俄语:Варяги, Varyagi或Varyahy)也作瓦里亚基人、瓦兰吉亚人、瓦兰人、法朗清人、