正五边形

✍ dations ◷ 2025-10-03 04:40:31 #正五边形
在几何学中,五边形是指有五条边和五个顶点的多边形,其内角和为540度。五边形可以分为凸五边形和非凸五边形,其中非凸五边形包含了凹五边形和另一种边自我相交的五角星。最简单的五角星可借由将正五边形的对角线连起来构成。正五边形是指五个边等长且五个角等角的五边形,其内角为108度,是一种正多边形,在施莱夫利符号中可以用 { 5 } {displaystyle left{5right}} 来表示。正五边形的中心角为72度,其具有五个对称轴,其旋转对称性有5个阶(72°、144°、216° 和 288°)。其中 R {displaystyle R} 为外接圆半径。边长为 t {displaystyle t} 的正凸五边形面积可以将之分割成5个等腰三角形计算:正五边形不能镶嵌平面,因为其内角是108°,不能整除360°。截至2015年 (2015-Missing required parameter 1=month!),2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。。正多边形的面积公式为:其中, P {displaystyle P} 是周长、 r {displaystyle r} 是边心距。正五边形的 P {displaystyle P} 和 r {displaystyle r} 可由三角函数计算:其中, t {displaystyle t} 是正五边形的边长。正五边形是一个圆外切多边形,因此有内切圆。其内切圆半径与边心距相同,并且可以尤其边长来决定。其中, r {displaystyle r} 为内切圆半径与边心距相同、t为正五边形边长。里士满提出了一个构造正五边形的方法,并且在克伦威尔的《多面体》中被进一步讨论。。右上的图显示了里士满绘制正五边形的方法。先利用单位圆决定五边形的半径。 C {displaystyle C} 为单位圆圆心, M {displaystyle M} 是圆 C {displaystyle C} 半径的中点。 D {displaystyle D} 是位于垂直于 M C {displaystyle MC} 的另外一条半径的圆周上。作 ∠ C M D {displaystyle angle CMD} 的角平分线,令 Q {displaystyle Q} 为 ∠ C M D {displaystyle angle CMD} 的角平分线与 C D {displaystyle CD} 的交点。作过 Q {displaystyle Q} 平行于 M C {displaystyle MC} 的直线,令之与圆 C {displaystyle C} 相交的交点为 P {displaystyle P} ,则 D P {displaystyle DP} 为正五边形的边长。这条边的长度可以利用圆下方的两个直角三角形 D C M {displaystyle DCM} 和 Q C M {displaystyle QCM} 。利用勾股定理,较大的三角形斜边为 5 2 {displaystyle {frac {sqrt {5}}{2}}scriptstyle } 。小三角形其中一股h可由半角公式求得:其中,角 ϕ {displaystyle phi } 可由大三角形求得,其值为:由此可得到在下图正五边形的边长的一些相关值。右侧三角形的边长 a {displaystyle a} 可借由再带一次勾股定理得:欲求出五边形边长 s {displaystyle s} 可透过左侧的三角形,由勾股定理得:五边形边长 s {displaystyle s} 为:得到了正确的结果因此此种构造正五边形的方法是有效的。约公元前300年,欧几里得在他的《几何原本》中描述了一个用直尺和圆规做出正五边形的过程。正五边形可以借由尝试在一张长条纸张上打一个反手结,并将多出来的部分向后折来构造。这种折法被用在折纸星星上。等边五边形是指五条边等长的五边形。等边五边形不一定是正五边形。由于其内角可以取自一个范围内的集合,而形成一个等边五边形的群,相比之下,正五边形由于其内角也固定了,因此是唯一的。有两个直角的等边五边形由于外形与有屋顶的房屋形状非常相似,因此通常用作房子的符号。五边形镶嵌是指用全等的五边形没有空隙地填满整个平面的镶嵌图形。2017年5月,里昂高等师范学校Michaël Rao宣称已证明只存在15种凸五边形镶嵌平面情况。扭歪五边形,又称不共面五边形,是指顶点并非完全共面的五边形。一些高维度多胞体的皮特里多边形(英语:Petrie polygon)是扭歪五边形,例如四维正五胞体。类五边形形是五边形在其他维度的类比,只存在于四维或以下的空间。这些形状都具有Hn的考克斯特群,其中正五边形为H2,阶数为10。有一些多面体由五边形构成,最常见的就是正十二面体,是一个由正五边形组成的正多面体。

相关

  • 转化转型(英语:transformation),又译转化,即细胞通过摄取外源遗传物质(DNA或RNA)而发生遗传学改变的过程。在转化过程中,转化的DNA片段称为转化因子。受体菌只有处在感受态时才能够摄
  • 卡贝兹拉米夫定/齐多夫定(英语:Lamivudine/zidovudine),商品名为卡贝兹(英语:Combivir),为结合两种抗反转录病毒药物拉米夫定(lamivudine)和齐多夫定(zidovudine)的抗艾滋病复方药物。给药时会
  • 弱碱布朗斯特-劳里酸碱理论中,弱碱指在水溶液中不完全电离的碱,意即质子化反应不完全。一般碱的pH值范围为7~14,其中7为中性,14则为强碱性,可通过以下公式计算:相对强碱而言,弱碱从水分
  • 结节性硬化症结节性硬化症(英语:tuberous sclerosis complex,缩写作 TSC)是一种罕见的多系统先天性疾病,会在脑部、心脏、肾脏、皮肤及其他器官出现良性肿瘤,因此病患可能出现癫痫、发育迟缓或
  • 克劳福德·朗克劳福德·威廉森·朗(Crawford Williamson Long, 1815年11月1日-1878年6月16日),美国外科医生和药剂师,一般认为是他首次使用吸入乙醚作为麻醉剂。不过他的工作在好几年中只有同
  • 火柴火柴,又称自来火、洋火棍,是取火工具,利用某些物质的剧烈氧化还原反应,产生高温而发火燃烧。火柴由火柴头(发火或引火介质)和火柴梗(燃烧介质)两部分组成,配合磷皮(发火介质)摩擦点火。
  • 棱镜计划2001年–2007年–与英国政府通信总部合作项目非持续进行项目棱镜计划(英语:PRISM)是一项由美国国家安全局自2007年开始实施的绝密级网络监控计划。该计划的正式名称为“US-984X
  • 范宁县范宁县(Fannin County, Georgia)位美国乔治亚州北部的一个县,北邻田纳西州和北卡罗莱纳州。面积1,014平方公里。根据美国2000年人口普查,共有人口19,798人。县治布卢里奇(Blue Ri
  • 海克·卡末林·昂内斯海克·卡末林·昂内斯(荷兰语:Heike Kamerlingh Onnes,1853年9月21日-1926年2月21日),荷兰物理学家,超导现象的发现者,低温物理学的奠基人。昂内斯1853年出生于荷兰的格罗宁根。他的
  • 棋类棋类、棋类游戏、棋是华人对游戏依照用具与内容来区别的一种特有分类名称,英文无直接对应的字词,然而多数种类棋子可翻成"Piece",或会分类成棋盘游戏("Boardgame"),藏族可对应的