艾里函数

✍ dations ◷ 2025-07-16 05:45:53 #特殊函数,特殊超几何函数,微分方程

艾里函数(Ai()),英国英格兰天文学家、数学家乔治·比德尔·艾里命名的特殊函数,他在1838年研究光学的时候遇到了这个函数。Ai()的记法是Harold Jeffreys引进的。Ai()与相关函数Bi()(也称为艾里函数),是以下微分方程的解:

这个方程称为艾里方程或斯托克斯方程。这是最简单的二阶线性微分方程,它有一个转折点,在这一点函数由周期性的振动转变为指数增长(或衰减)。

对于实数,艾里函数由以下的积分定义:

虽然这个函数不是绝对可积的(当趋于+∞时积分表达式不趋于零),这个广义积分还是收敛的,因为它快速振动的正数和负数部分倾向于互相抵消(这可以用分部积分法来检验)。

把: y = A i ( x ) {\displaystyle y=Ai(x)} 趋于−∞时,振幅与 A i ( x ) {\displaystyle Ai(x)} )和Bi()的朗斯基行列式是 1 π {\displaystyle {\frac {1}{\pi }}} 是正数时,Ai()是正的凸函数,指数衰减为零,Bi()也是正的凸函数,但呈指数增长。当是负数时,Ai()和Bi()在零附近振动,其频率逐渐上升,振幅逐渐下降。这可以由以下艾里函数的渐近公式推出。

当趋于+∞时,艾里函数的渐近表现为:

而对于负数方向的极限,则有:

这些极限的渐近展开式也是可以得到的。

我们可以把艾里函数的定义扩展到整个复平面:

其中积分路径 C {\displaystyle C} )和Bi()延拓为复平面上的整函数。

以上Ai()的渐近公式在复平面上也是正确的,如果取主值为2/3,且不在负的实数轴上。Bi()的公式也是正确的,只要位于扇形{∈C : |arg | < (1/3)π−δ}内,对于某个正数δ。最后,Ai(−)和Bi(−)是正确的,如果位于扇形{∈C : |arg | < (2/3)π−δ}内。

从艾里函数的渐近表现可以推出,Ai()和Bi()在负的实数轴上都有无穷多个零点。Ai()在复平面内没有其它零点,而Bi()在扇形{∈C : (1/3)π < |arg | < (1/2)π}内还有无穷多个零点。


当自变量是正数时,艾里函数与变形贝塞尔函数之间有以下的关系:

在这里,±1/31/3是方程 x 2 y + x y ( x 2 + 1 / 9 ) y = 0 {\displaystyle x^{2}y''+xy'-(x^{2}+1/9)y=0} ±1/3是方程 x 2 y + x y + ( x 2 1 / 9 ) y = 0 {\displaystyle x^{2}y''+xy'+(x^{2}-1/9)y=0} 的解。

Scorer函数是 y x y = 1 / π {\displaystyle y''-xy=1/\pi } 的解,它也可以用艾里函数来表示:

或是利用超几何函数,

相关

  • 南高加索语族南高加索语系又称卡特维尔语系(格鲁吉亚语:ქართველური ენები),世界上主要语系之一,属于高加索诸语言。语言人口约520万,主要分布于格鲁吉亚,也有少量分布在土耳其、
  • 第12名这是按照各国国内生产总值(GDP)排序的列表。页面上提供的美元估算的国内生产总值,都根据购买力平价(PPP)的计算产生。因各机构统计模型不同,所以得出的数据与排名也略有差异。当比
  • 邓肯一世参数所指定的目标页面不存在,建议更正成存在页面或直接建立下列一个页面(建立前请先搜寻是否有合适的存在页面可以取代):邓肯·麦克克里南(中世纪盖尔语:Donnchad mac Crinain;现代
  • 三角化八面体在几何学中,三角化八面体又称三角三八面体 是一种卡塔兰立体,其对偶多面体为截角立方体,可以视为在正八面体每个面上加入三角锥的结果 ,但由于有另一种多面体也是由正八面体每个
  • 夏威夷州众议院(英语:Hawaii House of Representatives)是美国夏威夷州议会的下议院。夏威夷州众议院共有51名议员,每届任期2年。夏威夷州众议院领导人为议长。现任众议院议长为
  • 河南文艺出版社河南文艺出版社成立于1996年6月,前身为黄河文艺出版社和河南人民出版社文艺编辑处。《康熙大帝》、《乾隆皇帝》、《大秦帝国》《唐太宗》、《越王勾践》、《东方艳后》《大
  • 剑桥大学评议会大楼剑桥大学评议会大楼(Senate House)现在主要用于学位仪式。此前曾用作剑桥大学评议会会议地点。它位于剑桥市中心,介于国王学院和冈维尔与凯斯学院之间,建于1722–1730年,新古典主
  • 朱慈烛益王朱慈烛(?-?),明朝第六代益王益定王朱由木的儿子。他在永历四年(1650年)三月袭封益王。永历十六年(1662年),南明灭亡,朱慈烛不知所终,后来由长兄 益先王朱慈炲的嫡第一子朱和壐袭封益
  • 何喜文何喜文(越南语:Hà Hỉ Văn/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H","Ming
  • 黄守恭黄守恭(629年-712年),字国材,号一翁,又称黄长者是泉州紫云黄姓的始祖。黄守恭的先祖黄元方始入闽南,至黄守恭时,他从福州南下,经莆田,最后定居于泉州。太极元年,黄守恭逝世并葬于泉州丰