重整化群

✍ dations ◷ 2025-10-25 15:59:17 #量子场论,统计力学,重整化群,缩放对称性,数学物理

在理论物理中,重整化群(renormalization group,简称RG)是一个在不同长度标度下考察物理系统变化的数学工具。

标度上的变化称为“标度变换(英语:Scale transformation)”。重整化群与“标度不变性(英语:Scale invariant)”和“共形不变性(英语:Conformal invariant)”的关系较为紧密。共形不变性包含了标度变换,它们都与自相似有关。在重整化理论中,系统在某一个标度上自相似于一个更小的标度,但描述它们组成的参量值不相同。系统的组成可以是原子,基本粒子,自旋等。系统的变量是以系统组成之间的相互作用来描述。

基本想法就是耦合常数依赖长度缩放或能量标度,重整化群帮助陈述耦合数量和能量标度的关系。默里·盖尔曼和Francis E. Low于1954年提出了下面量子电动力学的重整化群方程:

() = −1( (/)d (()) ) ,

(κ) = −1( (κ/)d (()) ) = −1( (κ/)d (()) )

费恩曼、朱利安·施温格、朝永振一郎在1965年赢了物理学的诺贝尔奖,因为他们都把重整化以及正规化等想法应用于量子电动力学。

利奥·卡达诺夫在1966年推出块自旋的概念来解释重整化。

然后肯尼斯·威尔森使用重整化群解决近藤问题, 以及描述临界现象和第二相变。 他1982年赢了诺贝尔奖。

这一节介绍重整化群的一个简单图像:块自旋重整化群。这是由利奥·卡达诺夫在1966年推导出来的。

首先考虑一个固体,如图所示,原子以二维正方形形式排列。假设每一个原子只与它最邻近的原子有相互作用,且这一系统的温度为 T {\displaystyle T} ,相互作用的强度使用耦合常数 J {\displaystyle J} 来描述。这一物理系统可以用一个特定的式子来表达,记为 H ( T , J ) {\displaystyle H(T,J)}

Rgkadanoff.png

现在,我们把这个系统分为有着 2 × 2 {\displaystyle 2\times 2} 个方块的块区,进而用块变量来描述这个系统,这些变量可以是块内变量的平均数。我们假设这些块变量可以用相同的方程来描述,只不过参数 T {\displaystyle T} J {\displaystyle J} 不同(事实上这一假设当然并不成立,但在实际应用中这一近似已足够好)。

原本这个系统内有较多的原子,现在,在问题重整化后,只有四分之一个原子需要求解。按照上面的方法再迭代一次后得到 H ( T , J ) {\displaystyle H(T'',J'')} ,这次只需要计算最初的十六分之一个原子。当然,最好是能够迭代直到只剩下一个最大的块区。一般来说,当迭代很多次后,重整化群变换将趋向于一个不动点上的数。

现在考虑一个具体的例子:铁磁-顺磁相变中的伊辛模型。在这个模型里,耦合常数 J {\displaystyle J} 代表邻近电子自旋平行时候的相互作用力。这一模型中有三个不动点:

假设有一个可以用状态变量 { s i } {\displaystyle \{s_{i}\}} 和一组耦合常数 { J k } {\displaystyle \{J_{k}\}} 表示的函数 Z {\displaystyle Z} 。这个函数必须能够用来描述整个物理系统,比如某个配分函数、作用量、哈密顿量等等。

现在我们考虑状态变量上的块变换 { s i } { s ~ i } {\displaystyle \{s_{i}\}\to \{{\tilde {s}}_{i}\}} s ~ i {\displaystyle {\tilde {s}}_{i}} 所包含的数目必须小于 s i {\displaystyle s_{i}} 。接下来我们可以把函数 Z {\displaystyle Z} 只用 s ~ i {\displaystyle {\tilde {s}}_{i}} 来表示。如果 { J k } { J ~ k } {\displaystyle \{J_{k}\}\to \{{\tilde {J}}_{k}\}} 也是可以实现的,那么就说这个物理系统是可重整化的。

最基本的物理理论都是可以重整化的,比如量子电动力学,量子色动力学,电弱相互作用等,但是引力是无法重整化的。此外,凝聚态物理中的大部分理论也是可以被重整化的,比如超导,超流。

变量的变换可以由一个β函数实现: { J ~ k } = β ( { J k } ) {\displaystyle \{{\tilde {J}}_{k}\}=\beta (\{J_{k}\})} 。这一函数可以在 J {\displaystyle J} 空间上导出流图。系统的宏观状态由流图上的不动点给出。

由于重整化群变换是有损的,这一变换不可逆,所以这一变换实际上是数学上的半群。

参见Phi fourth theory(英语:Quartic interaction)(四次交互论; ϕ 4 {\displaystyle \phi ^{4}} 论)。欧几里得空间的拉氏量是

配分函数或泛函积分是:

通过重正化以及正规化 Λ {\displaystyle \Lambda } Λ = | p | < Λ d ϕ ( p ) {\displaystyle _{\Lambda }=\prod _{|p|<\Lambda }d\phi (p)}

0 < b < 1 {\displaystyle 0<b<1}

所以

介绍 ϕ ϕ ^ {\displaystyle \phi {\hat {\phi }}}

所以新的拉氏量是 L eff ( ϕ ) {\displaystyle {\mathcal {L}}_{\textrm {eff}}(\phi )} 以及

L eff ( ϕ ) {\displaystyle {\mathcal {L}}_{\textrm {eff}}(\phi )} 不同于 L ( ϕ ) {\displaystyle {\mathcal {L}}(\phi )} ,因为 λ , ϕ {\displaystyle \lambda ,\phi } 改变了。 上面的 Z 陈述一个effective field theory(英语:effective field theory)。若 x = b x , p = p b , | p | < Λ {\displaystyle x'=bx,p'={p \over b},|p|<\Lambda } .

假设

所以

耦合常数的变量为 Δ m 2 , Δ Z , Δ λ {\displaystyle \Delta m^{2},\Delta Z,\Delta \lambda } 。耦合常数的演进是动力系统的临界点:

d = 4 {\displaystyle d=4} ,因为 b < 1 {\displaystyle b<1} 所以B和C是无关的,m是相关的,并且 λ {\displaystyle \lambda } 是边缘的。

而且 ϕ 4 {\displaystyle \phi ^{4}} 论是可重整化的。

米切尔·费根鲍姆使用重整化群计算费根鲍姆常数,而且将重整化应用于分岔理论。

阿图尔·阿维拉(巴西数学家)也将重整化群应用于动力系统、费根鲍姆常数等

其他应用包括:

相关

  • LINEs长散在核元件(英语:Long interspersed nuclear element,或Long interspersed elements,缩写LINEs)是一类的不包含长末端重复序列的反转录转座子,遍布于许多真核生物的基因组中。LI
  • Kindle系列Amazon Kindle是亚马逊公司设计的一系列电子书阅读器。用户可以通过无线网络使用Kindle购买、下载和阅读电子书、报纸、杂志、部落格及其他电子媒体。亚马逊公司旗下Lab126
  • 计算机辅助制造计算机辅助制造(英文:Computer-aided manufacturing,缩写:CAM)是工程师大量使用产品生命周期管理计算机软件的产品组件制造过程。计算机辅助设计中生成的组件三维模型用于生成驱
  • 圭亚那华人圭亚那华人群体主要是由在19世纪被带到英属圭亚那地区(英语:British Guiana)的华人劳工的后代们构成。在1853年到1879年间,以广东人为主的14000名华人劳工来到了英属加勒比地区(
  • 间谍卫星间谍卫星又叫军用侦察卫星,其主要用于对使用国家有兴趣的其他国家或是地区进行情报搜集,搜集的情报种类可以包含军事与非军事的设施与活动,自然资源分布、运输与使用,或者是气象
  • 内布拉斯加国家森林内布拉斯加州国家森林(英语:Nebraska National Forest)是座美国国家森林,位于内布拉斯加州,森林总面积141,864英亩(574平方千米),拥有全美最大的人工种植林区。
  • 朱利安·刘易斯朱利安·刘易斯(Julian Lewis,1951年9月26日-)是一位英格兰政治人物,他的党籍是保守党。自1997年开始,他担任东新福里斯特选区选出的英国下议院议员。
  • 副本副本(英语:Instance dungeon)是网络游戏用语,对于大型多人在线角色扮演游戏(MMORPG)而言是一个独立区域,在过去常被称为“地下城”。 每一个队伍进入副本时,将会拥有该队伍的地图,不
  • 天凉好个秋《天凉好个秋》(英语:)为1980年出品,由李行担任出品人、大众电影公司发行的台湾电影。陈坤厚担任导演,侯孝贤则担任副导演及编剧。本片在淡水河畔、台中市松鹤部落取景,并且不吝以
  • 南日本南日本(みなみにほん)是对日本进行范围较大的地理区分时使用的词语。对应词是北日本。但在法令中不见使用。一般其范围为九州地方,但九州地方亦可划入西日本的范围内。日治时代