重整化群

✍ dations ◷ 2025-01-11 04:01:29 #量子场论,统计力学,重整化群,缩放对称性,数学物理

在理论物理中,重整化群(renormalization group,简称RG)是一个在不同长度标度下考察物理系统变化的数学工具。

标度上的变化称为“标度变换(英语:Scale transformation)”。重整化群与“标度不变性(英语:Scale invariant)”和“共形不变性(英语:Conformal invariant)”的关系较为紧密。共形不变性包含了标度变换,它们都与自相似有关。在重整化理论中,系统在某一个标度上自相似于一个更小的标度,但描述它们组成的参量值不相同。系统的组成可以是原子,基本粒子,自旋等。系统的变量是以系统组成之间的相互作用来描述。

基本想法就是耦合常数依赖长度缩放或能量标度,重整化群帮助陈述耦合数量和能量标度的关系。默里·盖尔曼和Francis E. Low于1954年提出了下面量子电动力学的重整化群方程:

() = −1( (/)d (()) ) ,

(κ) = −1( (κ/)d (()) ) = −1( (κ/)d (()) )

费恩曼、朱利安·施温格、朝永振一郎在1965年赢了物理学的诺贝尔奖,因为他们都把重整化以及正规化等想法应用于量子电动力学。

利奥·卡达诺夫在1966年推出块自旋的概念来解释重整化。

然后肯尼斯·威尔森使用重整化群解决近藤问题, 以及描述临界现象和第二相变。 他1982年赢了诺贝尔奖。

这一节介绍重整化群的一个简单图像:块自旋重整化群。这是由利奥·卡达诺夫在1966年推导出来的。

首先考虑一个固体,如图所示,原子以二维正方形形式排列。假设每一个原子只与它最邻近的原子有相互作用,且这一系统的温度为 T {\displaystyle T} ,相互作用的强度使用耦合常数 J {\displaystyle J} 来描述。这一物理系统可以用一个特定的式子来表达,记为 H ( T , J ) {\displaystyle H(T,J)}

Rgkadanoff.png

现在,我们把这个系统分为有着 2 × 2 {\displaystyle 2\times 2} 个方块的块区,进而用块变量来描述这个系统,这些变量可以是块内变量的平均数。我们假设这些块变量可以用相同的方程来描述,只不过参数 T {\displaystyle T} J {\displaystyle J} 不同(事实上这一假设当然并不成立,但在实际应用中这一近似已足够好)。

原本这个系统内有较多的原子,现在,在问题重整化后,只有四分之一个原子需要求解。按照上面的方法再迭代一次后得到 H ( T , J ) {\displaystyle H(T'',J'')} ,这次只需要计算最初的十六分之一个原子。当然,最好是能够迭代直到只剩下一个最大的块区。一般来说,当迭代很多次后,重整化群变换将趋向于一个不动点上的数。

现在考虑一个具体的例子:铁磁-顺磁相变中的伊辛模型。在这个模型里,耦合常数 J {\displaystyle J} 代表邻近电子自旋平行时候的相互作用力。这一模型中有三个不动点:

假设有一个可以用状态变量 { s i } {\displaystyle \{s_{i}\}} 和一组耦合常数 { J k } {\displaystyle \{J_{k}\}} 表示的函数 Z {\displaystyle Z} 。这个函数必须能够用来描述整个物理系统,比如某个配分函数、作用量、哈密顿量等等。

现在我们考虑状态变量上的块变换 { s i } { s ~ i } {\displaystyle \{s_{i}\}\to \{{\tilde {s}}_{i}\}} s ~ i {\displaystyle {\tilde {s}}_{i}} 所包含的数目必须小于 s i {\displaystyle s_{i}} 。接下来我们可以把函数 Z {\displaystyle Z} 只用 s ~ i {\displaystyle {\tilde {s}}_{i}} 来表示。如果 { J k } { J ~ k } {\displaystyle \{J_{k}\}\to \{{\tilde {J}}_{k}\}} 也是可以实现的,那么就说这个物理系统是可重整化的。

最基本的物理理论都是可以重整化的,比如量子电动力学,量子色动力学,电弱相互作用等,但是引力是无法重整化的。此外,凝聚态物理中的大部分理论也是可以被重整化的,比如超导,超流。

变量的变换可以由一个β函数实现: { J ~ k } = β ( { J k } ) {\displaystyle \{{\tilde {J}}_{k}\}=\beta (\{J_{k}\})} 。这一函数可以在 J {\displaystyle J} 空间上导出流图。系统的宏观状态由流图上的不动点给出。

由于重整化群变换是有损的,这一变换不可逆,所以这一变换实际上是数学上的半群。

参见Phi fourth theory(英语:Quartic interaction)(四次交互论; ϕ 4 {\displaystyle \phi ^{4}} 论)。欧几里得空间的拉氏量是

配分函数或泛函积分是:

通过重正化以及正规化 Λ {\displaystyle \Lambda } Λ = | p | < Λ d ϕ ( p ) {\displaystyle _{\Lambda }=\prod _{|p|<\Lambda }d\phi (p)}

0 < b < 1 {\displaystyle 0<b<1}

所以

介绍 ϕ ϕ ^ {\displaystyle \phi {\hat {\phi }}}

所以新的拉氏量是 L eff ( ϕ ) {\displaystyle {\mathcal {L}}_{\textrm {eff}}(\phi )} 以及

L eff ( ϕ ) {\displaystyle {\mathcal {L}}_{\textrm {eff}}(\phi )} 不同于 L ( ϕ ) {\displaystyle {\mathcal {L}}(\phi )} ,因为 λ , ϕ {\displaystyle \lambda ,\phi } 改变了。 上面的 Z 陈述一个effective field theory(英语:effective field theory)。若 x = b x , p = p b , | p | < Λ {\displaystyle x'=bx,p'={p \over b},|p|<\Lambda } .

假设

所以

耦合常数的变量为 Δ m 2 , Δ Z , Δ λ {\displaystyle \Delta m^{2},\Delta Z,\Delta \lambda } 。耦合常数的演进是动力系统的临界点:

d = 4 {\displaystyle d=4} ,因为 b < 1 {\displaystyle b<1} 所以B和C是无关的,m是相关的,并且 λ {\displaystyle \lambda } 是边缘的。

而且 ϕ 4 {\displaystyle \phi ^{4}} 论是可重整化的。

米切尔·费根鲍姆使用重整化群计算费根鲍姆常数,而且将重整化应用于分岔理论。

阿图尔·阿维拉(巴西数学家)也将重整化群应用于动力系统、费根鲍姆常数等

其他应用包括:

相关

  • 葵花子葵花籽,是指向日葵的果实 (连壳)或种子(去壳后)。颜色有黑色、白色和褐色,大部分种子都是多色于一体。可以做为零食,也可以榨油,葵花籽油可以用来煮菜,而且含有不饱和脂肪酸约90%,也是
  • 行政公职局行政公职局(葡文:Direcção dos Serviços de Administração e Função Pública;葡文简称:SAFP),是澳门特别行政区政府负责研究、协调和辅助公共行政和公务员事务的部门,隶属
  • 交换学生交换学生,或称交换生、交流生,与留学生类似,但可以由本国学校配合对方的标准进行遴选,通过征选后外派至不同国家或地区的学校,交换到对方国家或地区学校就读的优秀学生(通常是签订
  • 吉尔特·霍夫斯塔德吉尔特·霍夫斯塔德(Geert Hofstede,1928年10月2日-2020年2月12日)是一名荷兰社会学家、心理学家。他在管理IBM期间,研究并发表了”各国间的霍夫斯塔德行为模式(Hofstede’s Model
  • 班尼·古德曼本杰明·大卫·“班尼”·古德曼(英语:Benjamin David "Benny" Goodman,1909年5月30日-1986年6月13日),美国著名单簧管演奏家,被誉为“摇摆乐之王”(The King of Swing)。
  • 乔纳斯兄弟乔纳斯兄弟(Jonas Brothers),由大哥凯文·乔纳斯、二哥乔·乔纳斯以及弟弟尼克·乔纳斯所组成的美国男子音乐组合,曾获格莱美奖新进艺人提名。他们曾参与演出迪士尼频道的《汉娜
  • 爱希礼夏爱希れいか(日语:まなき れいか,8月21日-),前宝冢歌剧团月组首席娘役。出生于日本福井县坂井市,中学时就读于坂井中学。身高167公分,血型A型。昵称“ちゃぴ(Chapi)”。2007年4月,进入
  • 另类电影另类电影(英语:Paracinema)是学术上对不同类型的非“正统”影像的分类。另类电影也指前卫电影或实验电影。
  • 1976年萨伊埃博拉出血热疫情1976年萨伊埃博拉出血热疫情是1976年8月爆发于萨伊(今刚果民主共和国)的埃博拉出血热疫情,首例病例出现在该国西北部蒙加拉省的亚布库 。造成疫情的病毒最初被认为是马堡病毒,后
  • 卡卢卡卢(Kalou)或译 卡奴、卡罗奥,可指: