反NP

✍ dations ◷ 2025-08-16 18:05:45 #复杂度类,最优化,计算机科学中未解决的问题

在计算复杂度理论上,反NP类是复杂度类的其中一类。

一个问题 X {\displaystyle {\mathcal {X}}} 是反NP的成员,当且仅当,它的补全 X C {\displaystyle {\mathcal {X}}^{\rm {C}}} 必定是在复杂度NP;用数学符号来写, C o N P := { L | L C N P } {\displaystyle \mathbf {CoNP} :=\{L|L^{\rm {C}}\in \mathbf {NP} \}}

简单来说,反NP复杂度,是高效率而又可核实地证明命题为错的组群,当中的佼佼者是立即找到反例存在。

其中一个NP完全问题的例子是子集合加总问题:给一个整数集合,问是否存在某个非空子集中的数字和为0? 例:给定集合{−7, −3, −2, 5, 8},答案是是,因为子集合{−3, −2, 5}的数字和是0。

补全问题在反NP中就会要求:给有限的整数集,是否每个非空子集之总和皆不为0?你的证明只要必须给出事例,叙述"没有"指定求和到零的一个非空子集,而这证明必须可以在合理时间内验证。

复杂度P,是多项式时间可解的问题集合,是一个NP和反NP的子集。P通常认定是一个在此两类别下的严格子集(但无法验证是落在两个集合的哪一边)。NP和反NP通常认为是不相等的。如果那样,NP完全问题将不会落在反NP问题中,且反NP完全问题将不会落在NP中。

本问题可由下述步骤粗略证明:假设有个NP完全问题 X {\displaystyle {\mathcal {X}}} 处于反NP问题的集合中,由于所有NP问题可被变换成 X {\displaystyle {\mathcal {X}}} 问题,因此我们可以为所有NP问题建造一个可在多项式时间判定其补性质的非确定型图灵机,意即NP是反NP的子集。因此NP问题的补集合是一个反NP问题的补集合,意即反NP是NP的子集。由于我们已知NP是反NP的子集,因此表示这两个集合是一样的,这证明了没有反NP完全问题可在NP类之中的性质是对称的(Symmetrical)。

用数学符号严格证明:假设一个问题 X {\displaystyle {\mathcal {X}}} 是NP完全, N P = C o N P {\displaystyle \mathbf {NP} =\mathbf {CoNP} } ,当且仅当 X C o N P {\displaystyle {\mathcal {X}}\in \mathbf {CoNP} } 。以下的证明是不能从以上文字直接看得出:

如果一个问题可被证同时为NP与反NP,则通常我们将会视作本问题不是NP完全命题的强力假设(若非如此,则NP相等于反NP)。

一个同时在NP与反NP集合的有名问题是整数分解:给两个正整数m与n,决定m是否有小于n且大于1的因数。

第一个问题的方法很清晰:如果m的确存在一个满足条件的因子,则长除法即可验证;另一个问题的方法就困难且精妙多了:你必须将m的所有质数因子列出,并为每个因子提供质数性质的证明。

整数因子分解常与质数性质问题混淆在一起,整数因子化据信是NP或反NP,而质数问题落在类别P。

相关

  • 19-去甲睾酮19-去甲睾酮(英语:19-nortestosterone)也被称为诺龙(Nandrolone)是一种雄激素和同化类固醇(AAS)。其酯类衍生物(如其苯丙酸酯、癸酸酯等)常作为贫血、恶病体质、骨质疏松症、乳癌的治
  • 社会建构社会建构主义(social constructionism)是由20世纪著名的思想家米歇尔·福柯在其《性史》第一卷中提出的。社会建构主义认为,性并不是一种独立于外界条件的观念,而是文化建构的结
  • 弱作用力弱相互作用(又称弱力或弱核力)是自然的四种基本力中的一种,其余三种为强核力、电磁力及万有引力。亚原子粒子的放射性衰变就是由它引起的,恒星中一种叫氢聚变的过程也是由它启动
  • 电梯电梯可以指:
  • 2002年2月逝世人物列表2002年逝世人物列表:1月 - 2月 - 3月 - 4月 - 5月 - 6月 - 7月 - 8月 - 9月 - 10月 - 11月 - 12月下面是2002年2月逝世的知名人士列表:
  • 丹巴德बाप तहसील丹巴德(印地语:धनबाद,孟加拉语:ধনবাদ)是位于印度贾坎德邦的城市。丹巴德以煤矿而闻名,是世界人口增长第96快的都市。据2011年的人口普查,丹巴德是印度
  • 强纳生·荷马·莱恩强纳生·荷马·莱恩(英语:Jonathan Homer Lane,1819年8月9日-1880年5月3日)是一位美国天文学家和发明家。莱恩生于美国纽约州,双亲是马克·莱恩和亨丽埃塔·莱恩(婚前姓 Tenny)。莱
  • 董源董源(?-约962年),名一作元,字叔达,江南锺陵(今江西进贤)人,亦作江南人,五代南唐画家。他曾担任北苑副使,因此又称董北苑:235。最擅长山水,其水墨及着色轻淡者,不为奇峭之笔,山石用麻皮皴,作
  • 吉尔·拜登吉尔·特蕾西·拜登(英语:Jill Tracy Biden,1951年6月3日-),婚前原姓雅各布斯(Jacobs),曾用姓史蒂文森(Stevenson),是一位美国教师,也是美国第47任副总统乔·拜登之妻,即美国第二夫人。吉
  • 雅内特·胡萨洛娃珍妮特·胡萨洛娃(斯洛伐克语:Janette Husárová,1974年6月4日-),斯洛伐克职业网球女运动员(1991年—),截至目前最高单打排名为世界第31。胡萨洛娃曾获得年终赛双打冠军。她曾参加20