反NP

✍ dations ◷ 2025-02-23 10:09:56 #复杂度类,最优化,计算机科学中未解决的问题

在计算复杂度理论上,反NP类是复杂度类的其中一类。

一个问题 X {\displaystyle {\mathcal {X}}} 是反NP的成员,当且仅当,它的补全 X C {\displaystyle {\mathcal {X}}^{\rm {C}}} 必定是在复杂度NP;用数学符号来写, C o N P := { L | L C N P } {\displaystyle \mathbf {CoNP} :=\{L|L^{\rm {C}}\in \mathbf {NP} \}}

简单来说,反NP复杂度,是高效率而又可核实地证明命题为错的组群,当中的佼佼者是立即找到反例存在。

其中一个NP完全问题的例子是子集合加总问题:给一个整数集合,问是否存在某个非空子集中的数字和为0? 例:给定集合{−7, −3, −2, 5, 8},答案是是,因为子集合{−3, −2, 5}的数字和是0。

补全问题在反NP中就会要求:给有限的整数集,是否每个非空子集之总和皆不为0?你的证明只要必须给出事例,叙述"没有"指定求和到零的一个非空子集,而这证明必须可以在合理时间内验证。

复杂度P,是多项式时间可解的问题集合,是一个NP和反NP的子集。P通常认定是一个在此两类别下的严格子集(但无法验证是落在两个集合的哪一边)。NP和反NP通常认为是不相等的。如果那样,NP完全问题将不会落在反NP问题中,且反NP完全问题将不会落在NP中。

本问题可由下述步骤粗略证明:假设有个NP完全问题 X {\displaystyle {\mathcal {X}}} 处于反NP问题的集合中,由于所有NP问题可被变换成 X {\displaystyle {\mathcal {X}}} 问题,因此我们可以为所有NP问题建造一个可在多项式时间判定其补性质的非确定型图灵机,意即NP是反NP的子集。因此NP问题的补集合是一个反NP问题的补集合,意即反NP是NP的子集。由于我们已知NP是反NP的子集,因此表示这两个集合是一样的,这证明了没有反NP完全问题可在NP类之中的性质是对称的(Symmetrical)。

用数学符号严格证明:假设一个问题 X {\displaystyle {\mathcal {X}}} 是NP完全, N P = C o N P {\displaystyle \mathbf {NP} =\mathbf {CoNP} } ,当且仅当 X C o N P {\displaystyle {\mathcal {X}}\in \mathbf {CoNP} } 。以下的证明是不能从以上文字直接看得出:

如果一个问题可被证同时为NP与反NP,则通常我们将会视作本问题不是NP完全命题的强力假设(若非如此,则NP相等于反NP)。

一个同时在NP与反NP集合的有名问题是整数分解:给两个正整数m与n,决定m是否有小于n且大于1的因数。

第一个问题的方法很清晰:如果m的确存在一个满足条件的因子,则长除法即可验证;另一个问题的方法就困难且精妙多了:你必须将m的所有质数因子列出,并为每个因子提供质数性质的证明。

整数因子分解常与质数性质问题混淆在一起,整数因子化据信是NP或反NP,而质数问题落在类别P。

相关

  • 生理生理学(英语:physiology/ˌfɪziˈɒlədʒi/; 来自古希腊语 φύσις (physis),意即:“nature, origin”,和 -λογία (-logia),意即:“study of” ) 是生物学的一门子领域,研
  • 共和尼德兰七省联合共和国(荷兰语:De Republiek der Zeven Verenigde Nederlanden),又称联省共和国,中文俗称荷兰共和国,是1581年-1795年期间,在现在的荷兰及比利时北部地区(弗兰德地区)
  • 安博因姆安博因港是西非国家安哥拉的城市,由南广萨省负责管辖,是位于该国西部大西洋沿岸的港口,建城于1923年,面积4,638平方公里,市内有机场设施,人口约66,000。
  • 概率公理概率公理(英语:Probability axioms)是概率论的公理,任何事件发生的概率的定义均满足概率公理。因其发明者为安德烈·柯尔莫果洛夫,也被人们熟知为柯尔莫果洛夫公理(Kolmogorov axi
  • Aspidosperma见文中白坚木属是开花植物夹竹桃科中的一属,包含物种如下:
  • 罗百吉罗百吉(1972年11月19日-),生于美国加州洛杉矶,是台湾著名电音歌手与DJ,高中时返台就读于华侨高中,毕业后便加入了演艺圈,以电子音乐为招牌出道。为台湾电音舞曲和Hip Hop的先驱。亦
  • 任城区任城区是中国山东省济宁市所辖的一个市辖区。2013年10月18日,国务院以国函〔2013〕115号文批复撤销济宁市市中区、任城区,设立新的济宁市任城区,以原市中区、任城区的行政区域
  • 田波田波(1931年12月25日-2019年12月15日),男,山东桓台人。中国病毒学家。中国科学院院士。1931年12月生于山东省桓台县夏庄。高中时代先后就读于南京国立中央大学附属中学和青岛市立
  • 透辉石透辉石(Diopside)是中常见的一种辉石,透辉石是一种天然的钙镁硅酸盐,透辉石外观呈灰白色,加热后洁白,是烧制陶瓷的一种原料,透辉石一字源自两个希腊字,分别是“双倍”(Di) 和“影
  • 赫尔穆特·普莱斯纳赫尔穆特·普莱斯纳(Helmuth Plessner, 1892年9月4日-1985年6月12日)是德国哲学家和社会学家,也是哲学人类学的主要代表人之一。普莱斯纳,跟马克斯·舍勒和阿尔诺德·盖伦,都是哲